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Discretization

The zero-order hold (ZOH) discretization of a continuous-time system re-
sults in the discretized system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
ZOH���!
T

s

x[k + 1] = A

d

x[k] +B

d

u[k]

y[k] = Cx[k] +Du[k]
(1)

under the mapping

A

d

= e

AT

s ; B

d

= (eAT

s � I)A�1B (2)

To be able to use the results of discretization, one needs to compute the
exponential of a matrix.
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Exponential of a matrix in MATLAB

✏
1 % Sample mat r i x

2 A = [1 2 ; 3 4 ] ;

3 % Exponen t i a l o f a mat r i x the c o r r e c t way

4 eA = expm(A ) ;

5 % The i n c o r r e c t way

6 eA2 = exp (A ) ;

7 i s e q u a l ( eA , eA2 )� �
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Computation of eAt

The matrix exponential is defined as an infinite-order Taylor’s series expan-
sion

e

At = I+At+A

2 t
2

2!
+ · · · (3)

1 Eigenvalue decomposition method: The exponential is computed
as

e

At = Ve

⇤t

V

�1 (4)

where V and ⇤ are the eigenvector and eigenvalue (diagional)
matrices of A. The identity in (4) uses the Taylor’s series expansion
in (3) and the fact that

V

�1
AV = ⇤
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Computation of eAt . . . contd.

2 Laplace Transform method: The method uses a Laplace-transform
route

e

At = L�1
n

(sI�A)�1
o

(5)

The identity in (5) is based on a simple fact that

L
�

e

At

 

= sI�A

In fact, the second method is preferable and more elegant than the
eigenvalue decomposition method.
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Solving a set of linear equations

Solve the following set of linear equations:

400x1 � 201x2 = 200

�800x1 + 401x2 = �200

Call this solution x0.

Further, suppose the A(1, 1) element has a slight uncertainty in it. For a
possible value of A(1, 1) = 401, determine the solution (call it x1).

How much does x1 di↵er from the previous solution x0?

Can you explain the reason for the di↵erence?
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Solving overdetermined / underdetermined problems

Overdetermined:

Ax ⇡ b, A 2 RN⇥M
,x 2 RM⇥1

, b 2 RN⇥1
, N > M

Least squares methods can be used to solve this problem.

Solution involves pseudo-inverse of A.

However,

i. The matrix A could be rank deficient!

ii. When N ⇥M or when rank(A) < M , we run into underdetermined
problems.
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Roots of polynomials

✏
1 % Find r o o t s o f a po l y nom i a l : x ˆ3 + 6xˆ2 + 11x + 6

2 x r = roots ( [ 1 6 11 6 ] ) % Takes i n the c o e f f i c i e n t s

3 pxva l = poly ( x r ) ; % Check i f you ge t back the same answer

4 % A l t e r n a t i v e l y f i n d r o o t s i n a r e g i o n

5 px = @( x ) x . ˆ3 + 6⇤x . ˆ2 + 11⇤ x + 6 ;

6 xvec = l i n s pa ce (�4 ,4 ,100)

7 p lo t ( xvec , px ( xvec ) ) ; hold on

8 p lo t ( xvec , zeros ( l ength ( xvec ) , 1 ) , ’ r�� ’ )

9 f z e ro ( px ,�1.4)� �
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In presence of uncertainties?

On several occasions, the polynomial may be only known with error

i. Uncertainties in the coe�cients of the polynomial
ii. Polynomial may have been obtained through data fitting✏

1 % Co e f f i c i e n t s o f po l y nom i a l

2 Pc = [1 6 11 6 ] ;

3 px = @( x , Pc ) Pc (1)⇤ x . ˆ3 + Pc (2)⇤ x . ˆ2 + Pc (3)⇤ x + Pc ( 4 ) ;

4 % Eva lua t e ove r p o s s i b l i t i e s

5 de l p c2 = 0.2⇤ randn ( 1 0 0 , 1 ) ;

6 x r v e c = [ ] ;

7 f o r k = 1 : l ength ( d e l p c2 )

8 Pcp = Pc + [0 de l p c2 ( k ) 0 0 ] ;

9 xrtemp = f z e ro (@( x ) px ( x , Pcp ) , �1 .7 ) ;

10 x r v e c = [ x r v e c ; xrtemp ] ;

11 end

12 % Plo t the s o l u t i o n s

13 p lo t (Pc (2 ) + de lpc2 , r e a l ( x r v e c ) , ’ x ’ )� �
A.K. Tangirala (IIT Madras) MATLAB Expo, Hyderabad April 27, 2017 9 / 57

Solving non-linear equations: Example

Let’s solve two non-linear equations:

2x1 � x2 � e

cx1 = 0

�x1 + 2x2 � e

cx2 = 0

First, set up the function.✏
1 f unc t i on Fx = myfun ( x , c )

2 % To be pas sed on to f s o l v e

3 %

4 % Parameter v a l u e o f ’ c ’ has to be s e t by the u s e r

5

6 % Equat i on s

7 Fx = [ ] ;

8 Fx (1 ) = 2⇤x (1 ) � x (2 ) � exp ( c⇤x ( 1 ) ) ;
9 Fx (2 ) = �x (1 ) + 2⇤x (2 ) � exp ( c⇤x ( 2 ) )� �
Now pass on this function “anonymously” to fsolve as shown below.
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Solving non-linear equations: Example (cont.)✏
1 % Sc r i p t to demonst ra te use o f f s o l v e

2

3 % Set v a l u e o f c

4 c = �2;

5 % Ca l l f s o l v e by p a s s i n g the hand l e o f myfun

6 x s o l = f s o l v e (@( x ) myfun ( x , c ) , [�3 ; �4])� �
Make it a point to check if the solution satisfies the given equations.

1 % Pass the s o l u t i o n to the f u n c t i o n

2 myfun ( x so l , c )

Exercise: Solve the non-linear equations:

x

2
1 + x

2
2 � 50 = 0

x1x2 � 25 = 0
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Simulation of dynamical systems

Numerical Integration
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Solving a set of ODEs

MATLAB o↵ers powerful tools for numerical integration (of ordinary dif-
ferential equations). Specific routines for handling sti↵ systems are also
available. Some of the routines include ode45, ode23, ode45s, ode23tb
and so on. Also see odeexamples for a demo of some interesting dynamical
systems.

Let’s take up a simple first-order dynamical system concerning the level
dynamics in a flow bu↵er process:

dh(t)

dt

=
F

i

(t)

A

c

� C

v

A

c

p

h(t) (6)

It is known that A
c

= 2 units and C

v

= 1.5 units. We shall learn how to

1 Trace out the level profile to changes in inlet flow
2 Determine the steady-state conditions
3 Develop a linearized model of the system (around an operating point)

using MATLAB.
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Numerically solving an ODE

ODEs can be numerically solved using the previously mentioned routines.
However, there exists an alternative route, which is through SIMULINK, a
powerful graphical user interface (GUI) for simulating dynamical systems.

SIMULINK is a powerful simulator integrated with MATLAB. It
allows the user to conveniently build and simulate complex process
flowsheets by means of block diagrams.

SIMULINK consists of an extensive set of libraries that contain
di↵erent types of basic blocks. Type simulink at the MATLAB
command to bring up the libraries and a new model window.
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A Simulink Model

A simulink model comprises a set of connected blocks with arrows indicating

the direction of flow. Each block in the model has a set of parameters that

can be accessed by double clicking on that block.

There are two types of parameters (properties): (i) Block parameters

(properties) and (ii) Simulation parameters. The block properties refer to

the properties of the systems and signals that constitute the model (block

diagram).

Simulation parameters refer to the configuration of the simulation such as

start/stop time, type of numerical technique, etc.

Numerical values/workspace variables in MATLAB can be passed as

parameters.
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Introduction to DEE

The Di↵erential Equation Editor as the name suggests, allows us to di-
rectly enter the ODEs. This is one of the most useful features of this
interface.

Before we can use the DEE, the ODEs should be written in the standard
form:

dx

dt

= f(x, u, p)

y = g(x, u, p)

Essentially, the LHS of the state equation should only contain derivatives
and all other terms should be taken over to the right hand side of the
equation.
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Introduction to DEE (cont.)

The DEE is invoked by typing: dee. This opens up a new window

A snapshot of the DEE window when invoked
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Setting up the equations

The notation used in the DEE is standard and fixed. States are always

denoted by x, inputs by u and outputs by y. The DEE allows us to (i)

provide initial conditions and / or (ii) provide external inputs to the system.

1 In order to set up a DEE system, first choose File ! New ! Model.

Drag and drop the DEE block from the DEE window into the New

Model window.

2 Double click on the DEE block to start entering the di↵erential

equations. Only the RHS of the di↵erential equations need to be

supplied

3 Parameters can be specified as numerical values OR variables in the

workspace. However, in the latter case, the parameters have to be

declared in the workspace.

4 Note: It is useful to double click on the main block in each of the

demos to see how the di↵erential equations have been written.
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Finding the steady-state using trim

MATLAB’s linearization toolkit contains a function called trim. The
function trim works only with Simulink Models.

Given a Simulink block diagram, it calculates the steady-state
conditions.

In order to use trim, the Simulink block diagram should be redrawn
with the In and Out Ports specified at the appropriate nodes.

The syntax is as follows:
[x,u,y,dx]=trim(sys) OR [x,u,y,dx]=trim(’sys’,x0,u0) OR
[x,u,y,dx] = trim(sys,x0,u0,y0,ix,iu,iy)

where the sys is the Simulink Model, supplied in single quotes
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Syntax for trim

In the second form of usage, x0 and u0 are initial guesses for x and u

respectively. The function returns only one steady-state solution.
Since multiple steady-states can exist, it may be necessary to specify
either the value of the output, and/or the input, and/or the states
(check for degrees of freedom!)

The third form of the usage of trim in fact allows us to specify the
states and/or the inputs and/or the inputs at which we intend to find
a steady-state. While the arguments x0,u0,y0 allow us to specify
the values (or could be initial guesses), the additional arguments
iu, ix, iy allow us to specify which of (x0,y0,u0) have been
specified and which of these have been passed on as initial guesses
only.
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Using trim to obtain steady-state

For the non-linear tank level model, suppose we wish to find a
steady-state, then simply type
[x,u,y,dx] = trim(sys) at the command prompt, where sys is
the model name supplied in quotes.

Suppose we wish to find a steady-state value such that the output
(level) is at 9 units, then we type:
[x,u,y,dx] = trim(sys,1,1,9,[],[],1) at the MATLAB
command prompt.

The above syntax means that we have given initial guesses of x = 1,
u = 1 and asking it to find the steady-state such that the output is
y = 9 units.

The values passed to the function override the values of initial
conditions specified in the DEE block. This function can be used with
any Simulink block diagram.
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Linearization using linmod

The MATLAB function that performs the linearization using a SIMULINK
model is linmod. The syntax for this function is:

[A,B,C,D]=linmod(’sys’) OR [A,B,C,D]=linmod(’sys’,x,u)

The first usage simply returns the state-space matrices of the

linearized model for the block diagram specified in the Simulink

Model ‘sys’. With such a call, the function linmod assumes the

operating conditions to be those specified in the DEE block.
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Linearization using linmod (cont.)

The second usage on the other hand allows the user to specify a set

of operating conditions around which the user intends to obtain a

linearized model. This is achieved by passing the values of the states

and the inputs through the arguments (x,u)

For the non-linear tank level setup, the following commands may be

used:

[A,B,C,D] = linmod(’nltank_lm’) wherein we have assumed

that the initial state has been set to 16 in the DEE block.
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Exercises

1 Simulate, determine the steady-state and develop a linearized model

for a two tank system connected in series.

I The cross-sectional areas are A1 = 5 ft2 and A2 = 10 ft2 and the

valve constants are C

v1 = 2.5 and C

v2 = 5/
p
6 units.

2 A batch reactor carries out the reactions

A

k1f!
 
k1r B

k2! C

Assume that each of the reactions is first-order, the reactor operates

at constant volume, and there are no feed or product streams
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Exercises (cont.)

The modelling equations are:

dC

A

dt

= �k1fCA

+ k1rCB

dC

B

dt

= k1fCA

� k1rCB

� k2CB

dC

C

dt

= k2CB

where C

A

, C
B

and C

C

represent the concentrations (mol/volume) of

components A, B and C respectively.

1 For k1f = 2, k1r = 1, and k2 = 1.25 hr

�1, use ode45 to solve for the

concentrations as a function of time. Assume an initial concentration

of A of CA0 = 1 mol/liter. Then plot the concentrations as a functions

of time. For what time is the concentration of B maximized?
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Motivating Spectral (frequency-domain)

Analysis
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Power Spectral density: Example

Mixture of sines embedded in noise

Series contains N = 500 samples of a signal v[k] = sin(0.2⇡k) + sin(0.5⇡k) + e[k],

where e[k] is the GWN process with variance �

2
e

= 2.25.
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The periodogram shows distinct peaks at f1 = 0.1 and f2 = 0.25 cycles/sample

respectively =) the series predominantly contains two periodic components.

Try detecting these components from the series by a visual inspection!
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Fourier Transforms
Variant Representation Parseval’s relation & Signal requirements

Fourier Series
x(t) =

1X

n=�1
c

n

e

j2⇡nF0t

P

xx

=
1

T

p

Z
T

p

0
|x(t)|2 dt =

1X

n=�1
|c

n

|2

c

n

, 1

T

p

Z

T

p

x(t)e�j2⇡nF0t

dt x(t) is periodic with fundamental period T0 = 1/F0

Fourier
Transform

x(t) =

Z 1

�1
X(F )ej2⇡Ft

dF E

xx

=

Z 1

�1
|x(t)|2 dt =

Z 1

�1
|X(F )|2 dF

X(F ) ,
Z 1

�1
x(t)e�j2⇡Ft

dt x(t) is aperiodic s.t.

Z 1

�1
|x(t)| dt < 1 or

Z 1

�1
|x(t)|2 dt < 1 (weaker requirement)

Discrete-
Time Fourier
Series

x[k] =
N�1X

n=0

c

n

e

j2⇡kn/N

P

xx

=
1

N

N�1X

k=0

|x[k]|2 =
N�1X

n=0

|c
n

|2

c

n

, 1

N

N�1X

k=0

x[k]e�j2⇡kn/N

x[k] is periodic with fundamental period N

Discrete-Time
Fourier Transform

x[k] =

Z 1/2

�1/2
X(f)ejfk

df E

xx

=
1X

k=�1
|x[k]|2 =

Z 1/2

�1/2
|X(f)|2 df

X(f) ,
1X

k=�1
x[k]e�j2⇡fk

x[k] is aperiodic s.t. either
1X

k=�1
|x[k]| < 1 or

1X

k=�1
|x[k]|2 < 1 (weaker requirement)

Practical implementation: Discrete Fourier Transform (DFT),
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Fourier Transform: Example

The Fourier series representation of the periodic square wave

x(t) =

(
1, 0  t  1/2

�1, 1/2 < t  1

with period T

p

= 1 is given by the coe�cients

c

n

=

1

T

p

Z 1

0

x(t)e

�j2⇡nt

dt =

Z 1/2

0

e

�j2⇡nt

dt�
Z 1

1/2

e

�j2⇡nt

dt = j sin

⇣
n⇡

2

⌘
sin c

⇣
n⇡

2

⌘
e

�jn⇡
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Figure: Power spectral and Fourier decomposition of the square wave
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Revisiting example: Cleaning up the measurement

Suppose now that the objective is to extract the periodic components from the
measurement in the periodicity detection example.

A standard approach is to first zero out the power spectrum at all frequencies

except at those very close to and including f1 and f2. Subsequently, reconstruct

the signal using the phase information and inverse FT.
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Figure: Comparing the signal estimate with the true signal
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MATLAB Script

1 % Genera te the measurement

2 kvec = ( 0 : 4 9 9 ) ’ ;

3 vk = s i n (2⇤ p i ⇤0 .1⇤ kvec ) + s i n (2⇤ p i ⇤0 .25⇤ kvec ) + randn ( 5 0 0 , 2 . 2 5 ) ;

4

5 % Compute per iodogram

6 N = l ength ( vk ) ;

7 [ Pxx , wvec ] = per iodogram ( vk�mean( vk ) , [ ] ,N , 1 ) ;

8 f i g u r e ; p lo t ( wvec , Pxx/sum( Pxx ) ) ;

9

10 % Fou r i e r Transform

11 vk f = f f t ( vk ) ;

12 magvkf = abs ( vk f ( 1 : end / 2 ) ) ; phasevk = phase ( vk f ( 1 : end / 2 ) ) ;

13

14 % Zero out the c o n t r i b u t i o n s ( assumed to be ) due to n o i s e

15 magvkf2 = zeros ( l ength ( magvkf ) , 1 ) ;

16 magvkf2 ( 5 0 : 5 2 ) = magvkf ( 5 0 : 5 2 ) ;

17 magvkf2 (125 : 127 ) = magvkf ( 1 2 5 : 1 2 7 ) ;

18 vkfmod = magvkf2 .⇤ exp ( i ⇤ phvkf ) ;
19 vkfmod2 = [ vkfmod ; 0 ; f l i p u d ( conj ( vkfmod ( 2 : end ) ) ) ] ;
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MATLAB Script (cont.)

20 % Est imate the s i g n a l

21 vkhat = i f f t ( vkfmod2 ) ;

22

23 % Plo t a g a i n s t the t r u e d e t e r m i n i s t i c s i g n a l

24 xk = s i n (2⇤ p i ⇤0 .1⇤ kvec ) + s i n (2⇤ p i ⇤0 .25⇤ kvec ) ;

25 f i g u r e ; p lo t ( ( 0 : 9 9 ) , xk ( 1 : 1 0 0 ) , ’ r� ’ , ( 0 : 9 9 ) , vkhat ( 1 : 1 0 0 ) , ’b�� ’ ) ;
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Cross-spectral density

This is the frequency-domain counterpart of the cross-covariance function

�
yu

(f) =
1
X

l=�1
�

yu

[l]e�j2⇡fll] (7)

The CSD measures linear dependence between two (same) frequency
components of two di↵erent series

The cross density spectrum is complex

The magnitude of the CSD gives the strength of common power,
while the angle gives the phase lag between the two signals at that
frequency

Note: Replacing the cross-covariance function by the auto-covariance function in (7)

produces the auto-spectral density discussed previously
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CPSD: Example

Delay estimation using phase

Recall the process y[k] = Au[k �D] + v[k]. The cross-spectral density is

�

yu

(!) =

1X

l=�1

�

yu

[l]e

�j!l

=

1X

l=�1

A�

uu

[l �D]e

�j!l

= Ae

�j!D

�

uu

(!) (8)

Thus, |�
yu

(!)| = A�

uu

(!); �

yu

(!) = \�
yu

(!) = �D!
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(b) Coloured noise input

Figure: Time-delay estimation from the phase spectrum with A = 2 and D = 4, SNR =

16
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(Ordinary) Coherence

Coherency is the normalized cross-spectral density

⌘

yu

(f) =
�
yu

(f)
p

�
yy

(f)�
uu

(f)

Magnitude of coherency is coherence

For linear time-invariant systems, coherence is unity at all
frequencies.
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Coherence: Example

LTI system

Consider the process

G(q

�1
) =

2q

�1

1� 0.5q

�1
;

. A 1024-long input sequence u[k] with

filtered WN characteristics and a cut-o↵ frequency at !0 = 1.2566 rad/sec is used.

Further, SNR = �

2
x

/�

2
e

⇡ 16. Squared coherence is computed from N = 1024 samples.

Theoretically, |
yu

(!)|2 ⇡ 1 at low frequencies, where SNR is very high and

|
yu

(!)|2 ⇡ 0 at high frequencies, regions of very low SNR.
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Figure: Squared input-output coherence and SNR for the process
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Parameter Estimation
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Fitting curve to data: Example

Let’s now learn how to fit a mathematical function (curve) to a given
dataset.

Data generation

Assume that the data is being generated by a sum of exponentials

y(t) = K � (2K/3)e�t/⌧1 � (K/3)e�t/⌧2 (9)

where ⌧1 = 4, ⌧2 = 10 and K = 6.

We have observations of the above process at t = kT

s

, T

s

= 0.5 sec.
Moreover, the sensor noise adds on to these observations, so that:

y

m

[k] = K � (2K/3)e�k/⌧1 � (K/3)e�k/⌧2 + e[k] (10)

where e[k] is a Gaussian distributed random noise.
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MATLAB Code for Data Generation

Data generation and visualization✏
1 % Time i n s t a n t v e c t o r

2 kvec = l i n s pa ce ( 0 , 9 9 ) ’ ;

3 % Genera te t r u e r e s pon s e

4 yk = 6 � 4⇤exp(�kvec . / 8 ) � 2⇤exp(�kvec . / 2 0 ) ;

5 % Add measurement n o i s e

6 ym = yk + 0.1⇤ randn ( l ength ( yk ) , 1 ) ;

7

8 % Plo t the r e s u l t i n g data

9 f i g u r e
10 p lo t ( kvec , yk , ’b� ’ , kvec , ym , ’ rx ’ , ’ l i n ew id th ’ , 2 )

11 set ( gcf , ’ Color ’ , [ 1 1 1 ] ) ;

12 set ( gca , ’ f o n t s i z e ’ , 12 , ’ f ontwe ight ’ , ’ bold ’ ) ;

13 box o f f

14 x l a b e l ( ’ Sample Time ’ , ’ f o n t s i z e ’ , 12 , ’ f ontwe ight ’ , ’ bold ’ )

15 y l a b e l ( ’ Response ’ , ’ f o n t s i z e ’ , 12 , ’ f ontwe ight ’ , ’ bold ’ )� �
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MATLAB Code for Curve Fitting

First, define the function that maps the response to time instant k. Assume
for now that K is known.

Function for lsqcurvefit✏
1 f unc t i on yx = r e s p s y s ( x , xdata , c )

2 yx = c + x (1)⇤ exp(�xdata /x ( 3 ) ) + x (2)⇤ exp(�xdata /x ( 4 ) ) ;

3 end� �
Next, write the script that passes this function to lsqcurvefit.

Script for fitting curve

1 c = 6 ;

2 xhat = l s q c u r v e f i t (@( x , xdata ) r e s p s y s ( x , xdata , c ) , [ 1 1 1 2 ] , kvec , ym ) ;

Try changing the options in lsqcurvefit to see if you can improve the
estimates. Use the optimoptions command for this purpose.
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Example: E↵ect of SNR on parameter estimation

Process : x[k] = b1u[k � 1] + b0; b1 = 5; b0 = 2

Only y[k] = x[k] + v[k] (measurement) is available.

Goal: Estimate b1, b0 from u[k], y[k] data.
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Example: E↵ect of SNR . . . contd.
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Decrease in SNR increases the error in parameter estimates (/
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Example: Overfitting

Process : x[k] = 1.2 + 0.4u[k] + 0.3u2[k] + 0.2u3[k]

Only y[k] = x[k] + v[k] (measurement) is available.

Goal: Fit a suitable polynomial model.
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Example: Overfitting . . . contd.
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Example . . . contd.
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Empirical linearization of a liquid-level system

Fi

Fo

h

Objective: Build a model to explain the response in h(t) for changes in
F

i

(t)

For our purposes, we shall adopt the empirical approach - perform an “ex-
periment” wherein the inlet flow is excited and level readings are obtained.
Subsequently, a model is built from the input-output data.
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Data generating process

Process SensorD/A 
converter

Discrete-time 
input, u[k]

Discrete-time 
output, y[k]u(t) x(t)

Process:
dh(t)

dt

+
1

A

c

C

v

p

h(t) =
1

A

c

F

i

(t)

where A

c

is the cross-sectional area, C
v

is the valve coe�cient

Parameter A

c

C

v

h0 T

s

Value 2 units 1.5 units 9 units 1 unit

Input: Flow variations are introduced as a pseudo-random binary sequence
(PRBS), consisting of short and long duration pulses switching between two
binary levels

Measurement noise: A random error (white-noise) with variance adjusted
to obtain SNR 10.
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Preliminary experiment (step response)
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I Time constant of approximately 8 min. (first-order approximation).

I Choose sampling interval and input frequency content accordingly.
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Visualizing the input-output data
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Inferences

No visible trends or non-stationarities

Input contains primarily low frequencies

Spectral plots suggest that the system is a low-pass filter

Partition the data set into N = 1500 samples for training and
remaining for testing.

Work with deviation variables y[k] = ỹ[k]� ȳ[k], u[k] = ũ[k]� ū[k]
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Non-parametric (response) model estimation

Estimated impulse response

y[k] =
M�1
X

l=0

g[l]u[k � l]
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X
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Inferences

Stable system with a delay of one sample (due to ZOH)

First-order (or higher-order overdamped) dynamics

Gain of approximately 3.7 units. Time-constant of approx. 8 minutes.
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Frequency domain analysis
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Inferences

Low-pass filter characteristics

Gain and time-constant estimates can also be obtained from FRF

Coherence plot suggests that good fits can only be expected in the
low frequency range
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Identified (Empirical) Transfer Function Model

Model for the liquid-level system

Following a systematic procedure for identification, the model for the
liquid-level system is

y[k] =

(±0.005)
0.4621q�1

1� 0.8826
(±0.002)

q

�1u[k] + e[k] (11a)
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Comparison with the approximate discretized model

Compare the estimated model with the approximate, linearized, discretized
model:

x[k] = �0.8825x[k � 1] + 0.47u[k � 1] (12)

obtained at a sampling interval of T
s

= 1 min.

Compare this with the estimated model

â1 = �0.8826(±0.002), b̂1 = 0.4621(±0.006)

With minimal assumptions and knowledge of the process, we are able to
discover the underlying model with reasonable accuracy!
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Useful links

http://www.mathworks.com

The o�cial site of Mathworks, the makers of MATLAB.

https://www.tutorialspoint.com/matlab/

Tutorial on MATLAB - o↵ers easy learning material.

https://www.math.utah.edu/

~

eyre/computing/matlab-intro/

MATLAB Tutorial at the Department of Mathematics, University of
Utah.

http://www.matlabtips.com/learning-matlab/

Learning MATLAB, for new and advanced users.

https://matlabacademy.mathworks.com/R2016b/portal.html?

course=gettingstarted

Free interactive tutorials by MathWorks
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