MATLAB EXPO 2017
KOREA

48 27, M2

=5 ©17| matlabexpo.co.kr

PolyspaceS Z&2%t MISRA C:2012 S MalA|ZF @5 ZHA}

Introduction to Polyspace with MISRA C:2012 and RTE

285 U=

Gary.Ryu@mathworks.co.kr

© 2017 The MathWorks, Inc.

mailto:Gary.Ryu@mathworks.co.kr

4\ MathWorks

Agenda

- Why do we check MISRA C and Runtime errors?

« Polyspace Introduction
— How to check MISRA C:2012 violations

— How to verify Runtime errors

4\ MathWorks

Why do we check MISRA C or Runtime error ?

The intention was to provide a "restricted subset of a standardized structured language"
as required in the 1994 MISRA Guidelines for automotive systems being developed to meet
the requirements of functional safety standards like 1ISO 26262.

Table 1 - Topics To Be Covered By Modeling and Coding Guidelines

Topics ASIL
A B C D
la |Enforcement of low complexity ++ ++ ++ ++
:>1b Use of language subsets st st st it
1c |Enforcement of strong typing ++ ++ ++ ++
1d |Use of defensive implementation techniques (o] + ++ ++
le |Use of established design principles + + + ++
1f |Use of unambiguous graphical representation + T+ T+ Table 9 — Methods for Verification of Software Unit Design and Implementation
1g |Use of style guides + ++ ++ Tojiies ASIL
1h |Use of naming conventions ++ ++ ++ A B C D
" |la [Walkthrough ++ + o] o}
1b |Inspection + ++ ++ ++
1c |Semiformal verification + ++ ++
1d |Formal verification o] + +
:>- le |Control flow analysis + ++ ++
1f |Data flow analysis + ++ ++
1g |[Static code analysis + ++ ++ ++
. |1h |Semantic code analysis T T + +

4\ MathWorks

Why restricted subset?

= There are several drawbacks with the C language
— ISO Standard language definition is incomplete ...
= Undefined behavior
= Unspecified behavior
= Implementation-defined behavior

— Misuse language
— Misunderstanding language

— Lack of Runtime error checking

= One of solution iIs MISRA C and RTE detection with Static Analysis

@\ MathWorks

Why restricted subset?

int foo (int arg) {
return arg + 1;

}

void main (void) {
int var = O;
printf ("var : %d and %d\n”, var++, foo(var));

Output with ...
- gcc 5.4.0 cvar: 0 and 1

- Visual Studio 2013 :var: 0 and 2

&\ MathWorks’

Why restricted subset?

= There are several drawbacks with the C language
— ISO Standard language definition is incomplete ...
= Undefined behavior
= Unspecified behavior
= Implementation-defined behavior

— Misuse language
— Misunderstanding language

— Lack of Runtime error checking

= One of solution iIs MISRA C and RTE detection with Static Analysis

4\ MathWorks

Brief History of MISRA C

= MISRA C:2012
— Compatible with ISO/IEC 9899:1999 (C99)
— published in 2013
— 159 Guidelines — 173 Guidelines

= 16 Directives = 17 Directives
= 143 Rules = 156 Rules

More gailelires
fnr fwaﬂy
(At 2016)

= MISRA C:2004
— Compatible with ISO/IEC 9899:1990 (C90)

- MISRA C:1998
— Compatible with ISO/IEC 9899:1990 (C90)

4\ MathWorks

What is MISRA C:2012

= Directives

Guidelines for which it is not possible to provide the full description necessary to perform a
check for compliance. Static analysis tools may be able to assist in checking compliance.
For example, items are checked with design documents or requirements specification.

= Rules

Guidelines for which a complete description has been provided. It is possible to check
compliance with source code without any other information.

What is MISRA C:2012

= Directives

— 17 Directives
= 10 Required directives
= 7 Advisory directives

= Rules

— 156 Rules
= 16 Mandatory rules
= 108 Required rules
= 32 Advisory rules

Mandatory:
- Deviation from this guidelines is not permitted.

Required:
- Formal deviation is required.

Advisory:
- Formal deviation is not necessary, but alternative

arrangements should be made.

* Any guideline can be treated as required/mandatory guideline.

4\ MathWorks

10

4\ MathWorks

New Security guidelines of MISRA C:2012

= are to improve the coverage of the security concerns highlighted by ISO/
IEC 17961:2013

Safety Security

Coding Coding
Standard Standard

« MISRA C has evolved...
from automotive standard to industry-wide standard!

11

Polyspace PRODUCTS

Coding Rules, Code Metrics

Compiler Warnings

v, 4/ Polyspace Bug Finder
Polyspace Code Prover

/
/

Error Prevention

EfforiDetection

\

. Formal Methods

(No False negative)

"/ Polyspace Bug Finder "/ Polyspace Code Prover

4\ MathWorks

12

Not all bugs can be statically proven

"/ Polyspace Code Prover

e.g., divide by zero,
overflow, illegal
pointer dereferences

All Bugs

Statically Detectable

Provable

e.g., if(x=y) vs.
if(x==y), memory
leaks, partial
array access

4\ MathWorks

"/ Polyspace Bug Finder

13

4\ MathWorks

Polyspace supports for Coding Rules Compliance

- MISRA C:2012
— 11 Directives supported
— 156 rules supported
— 6 directives not enforceable e —_—

B Resiifs List
Al restits v TeNew [E+ <@ 5 & Showng 2,000/2,000 ¥

Family & Information o Flle o Folder &

ples\R2017a Prerelease\ Bug_Finder_Example\Madule_1\BF_Result - o X

" MISRA C:2012 violations by rule (Top 10 only)
Total: 1,365 violation(s) found

| ePedims)|

. 2 Unused code 7 84
8.2 |-
194 Code design 37 21,6 | ——
185 of the 228 rules supported H——
— I —
p p 7 Literals and constants 5 17.7 | e————
-8 Declarations and definitions 553 8,5 - I———
9 Initjalizatior 4 21.3 | —
C.5 | I———
=-10 The essential type model 161 14.4 1 m——
10.1 Gperands shall not be of an inappropriate essential type. 23 T T T T T T T
o] 50 100 150 200 250 300

£110.3 The value of an expression shall not be assigned to an object with a narr

" = * Category: Required rogram ming.c \mathwior. . ¢
1 'SF++ . 2005 —1 gery o q > E’ d gA A 2 Custom violations by rule v
< > H P >

w8 Project Browser |] Results List o
- 157 Of 234 rUIeS Supported e i | [programming.c. x| avE

Wariable trace prograrmming.c / bug_owverlappingassign(int a: a
= Result Review char b
Severity v | [Enter comment fere... }ou= {10}
Status ~
if (e==0) {
YMISRA C:2012 10.3 (Required) @ u.a L a+h:
The value of an expression shall not be assigned to an cbject with a narrower essential 1 el i
The expression is assigned to an cbject with a different essential type category. Blse .
o ub =uas /+ Defect: Assignment using self +/
}
oA ek (00 A0 R

<

D Configuration \ = Quiput Summary | (¥ Source

v

14

Polyspace supports for various Code Metrics

= Project Metrics

Direct Recursions

Header Files

Files
Recursions

= File Metrics

Comment Density

Estimated Function Coupling

Lines

Lines without comment

W hitp:locathost 163

metrics htmbPraduct=Rug%20Finder&iProg=Bug Fir O ~ €& || W Polyspace Metrics

Function Metrics

Cyclomatic Complexity

Higher Estimate of Local Variable Size
Lower Estimate of Local Variable Size
Language Scope

Call Levels

Call Occurrences

Called Functions

Calling Functions

Executable Lines

Function Parameters

Goto Statements

Instructions

Lines Within Body

Local Non-Static Variables

Local Static Variables

Paths

Return Statements

4\ MathWorks

15

Types of Defects detected by Polyspace Bug Finder

Numerical
= Division by zero, Overflow

= Invalid use of standard library
integer/floating point routine

Static memory
= Array access out of bounds
= Null pointer

Dynamic memory
= Memory leaks
= Use of previously freed pointer

Dataflow
= Write without further read
= Non-initialized variable

Concurrency

= Data races (atomic, non-atomic)
= Deadlocks

Resource management

= Resource leak
= Writing to read-only resource

Programming

= Invalid use of = or == operator
= Declaration mismatch

Good Practice

= Unused parameter
= Large pass-by-value argument

www.mathworks.com/help/bugfinder/defect-reference.himl

Security

4\ MathWorks

= Unsafe standard function
= Use of non-secure temporary file

Tainted data

= Array access with tainted index
= Tainted sign change conversion

Hle Reporiing Metrics Tools windon Help
% Y @ > Pun Bug Fnder ~ B Stop | L4

L
Ml resuits | Tahew [{l- & % @ Showng 8,15/8,15 ~
 Information ¥ Fie F Qase

rewously deslocated ponter |

y
| [impacc: Medum fGicha Sccpe
Impact: Medum dymamicmemery.c Gebal Scope

1 dynemismemaory.c Gobl Seope

4 21 Standard lbraries

= Result Review

|| Severity « [rter comment here. T
Status. hd

Memory leak (Impact: Medm) 2
Feinter [ports o dynamicaly slocated memory.
It has mot been freed before the end of its scope.
Evertt Fie e Line
i Dyramic slocstion dy
2 Assignment to local poiter i
3 Renm of function bug_memie:) 148
N Memory eak dynamcmemory.c bug_memieak() 148

void bua_menlesk(voidy

{
int pl = Cint~)el loc(sizeof(int)):
if (oi == NLL) return:

I B £+ Defecti We foract to fres the pointer =/

16

http://www.mathworks.com/help/bugfinder/defect-reference.html

Full list of Runtime checks in Polyspace Code Prover

C run-time checks

Unreachable Code
Function not called
Function not reachable
Non-initialized local variable
Non-initialized pointer
Non-initialized variable
Return value not initialized
Division by zero

Invalid operation on floats
Invalid shift operations
Overflow

Subnormal float

Absolute address usage
lllegally dereferenced pointer
Out of bound array index
Non-terminating call
Non-terminating loop

Correctness condition (array conversion must not extend range,
function pointer does not point to a valid function)

Invalid use of standard library routine
User assertion

Additional run-time checks for C++ only

= Incorrect object oriented programming
= Invalid C++ specific operations

= Function not returning value

= Null this-pointer calling method

= Uncaught exception

Trvaiid use of standard lbrary routine
Norvinifaized varisble
@Non-ter minating call
Ot of bourds array index
Gray Check
&Urreachable code
x

X X X X

Green Check
Division by zero

llegaly dereferenced pointer

-Irvaiid Use of standard brary routine
Nervinitalzed local variable
Norvinitalzed pointer

Norvinitalzed varizble

Ot of bounds array index

Overfiow

Return value not intialized

)

5
intializations.c
example.c
example.c
single_file_analysis.c gener

cormpl
Pointe.
Unrez

single_fle_analysis.c gener

o

7

101

kil

51
N

Y Palyspace - Code_Praver_Example C:\0D\OneDrive - MathWorks\Worksp: 20172\ Code_Prover_Examp ._1\CP_Result_} - o
File Reporting Metrics Tools Window Help

& & & [> run Code Prover v BStop| Q
-

Al results v TNew [Ev <o © Showing 394/334 v o5 g [l| £c % exarmple ¢ / Pointer_Arithmetic()
Farry 7 Inforrmation 7 Fie # Funcet | |2 Resut Review

=-Run-tirne Check 653021 ~ Severity v | [Enter comment here..

SRed Check 5 Stats S
& lllegaly dereferenced pointer

®1llegally dereferenced pointer &
Error: pointer is outside its bounds:
Dereference of local pointer 'p' (pointer to int 32, size: 32 bits)
Pointer is not nul
Points to 4 bytas at offset 400 in buffer of 400 bytes, 50 is cutside bounds
Pointer may peint to variable o field of variable:
‘array’, local to function Pointer_Arithmetic'

[Configuration | [Vl Result Details | @8 Graph | (%] Variable Access| f Call Herarchy

lProject Browser |[EResults List

example.c x
ptt;

¥
If (get bus_status() > 0 {
If (get_oil_pressure() > 0) {
101 Yo = 55 /% Qut of bounds */

}else {

¥
1

= get_bus_status();

<
B Dashboard | Bl output summary | [Source

BedEs A

www.mathworks.com/help/codeprover/run-time-check-reference.html

4\ MathWorks

17

http://www.mathworks.com/help/codeprover/run-time-check-reference.html

4\ MathWorks

How do Bug Finder results differ from Code Prover results?

Bug Finder /'S, Code Prover

Orange - Vulnerability

Nothing Found

Green - Reliable

Probable Bug

Grey — Unreachable / Dead

Red - Faulty

L VPurpIe-coding rule violations 1

18

Polyspace demonstration

‘ MathWorks:

19

