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Agenda

 Why do we check MISRA C and Runtime errors?

 Polyspace Introduction

– How to check MISRA C:2012 violations

– How to verify Runtime errors
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Why do we check MISRA C or Runtime error ?

The intention was to provide a "restricted subset of a standardized structured language" 

as required in the 1994 MISRA Guidelines for automotive systems being developed to meet 

the requirements of functional safety standards like ISO 26262.

Ref) ISO 26262 – Mapping Table (Certification Kit 2017a)

Topics
ASIL

A B C D

1a Enforcement of low complexity ++ ++ ++ ++ 

1b Use of language subsets ++ ++ ++ ++ 

1c Enforcement of strong typing ++ ++ ++ ++ 

1d Use of defensive implementation techniques o + ++ ++ 

1e Use of established design principles + + + ++ 

1f Use of unambiguous graphical representation + ++ ++ ++ 

1g Use of style guides + ++ ++ ++ 

1h Use of naming conventions ++ ++ ++ ++ 

Table 1 – Topics To Be Covered By Modeling and Coding Guidelines

Topics
ASIL

A B C D

1a Walkthrough ++ + o o 

1b Inspection + ++ ++ ++ 

1c Semiformal verification + + ++ ++ 

1d Formal verification o o + + 

1e Control flow analysis + + ++ ++ 

1f Data flow analysis + + ++ ++ 

1g Static code analysis + ++ ++ ++ 

1h Semantic code analysis + + + + 

Table 9 – Methods for Verification of Software Unit Design and Implementation
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Why restricted subset?

 There are several drawbacks with the C language

– ISO Standard language definition is incomplete …

 Undefined behavior

 Unspecified behavior

 Implementation-defined behavior

– Misuse language

– Misunderstanding language

– Lack of Runtime error checking

 One of solution is MISRA C and RTE detection with Static Analysis
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int foo  (int arg)  {

return  arg +  1;

}

void  main  (void)  {

int var =  0;

printf (“var :  %d and  %d\n”,  var++,  foo(var));

}

Output with …

- gcc 5.4.0

- Visual Studio 2013

: var :  0  and  1

: var :  0  and  2 
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Brief History of MISRA C

 MISRA C:2012 

– Compatible with ISO/IEC 9899:1999 (C99)

– published in 2013

– 159 Guidelines

 16 Directives

 143 Rules

 MISRA C:2004

– Compatible with ISO/IEC 9899:1990 (C90)

 MISRA C:1998

– Compatible with ISO/IEC 9899:1990 (C90)

– 173 Guidelines

 17 Directives

 156 Rules

More guidelines
for Security

(April, 2016)
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What is MISRA C:2012

 Directives

 Rules

Guidelines for which it is not possible to provide the full description necessary to perform a 

check for compliance. Static analysis tools may be able to assist in checking compliance.

For example, items are checked with design documents or requirements specification.

Guidelines for which a complete description has been provided. It is possible to check 

compliance with source code without any other information. 
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What is MISRA C:2012

 Directives
– 17 Directives

 10 Required directives

 7 Advisory directives

 Rules
– 156 Rules

 16 Mandatory rules

 108 Required rules

 32 Advisory rules

Mandatory:
- Deviation from this guidelines is not permitted.

Required:
- Formal deviation is required.

Advisory:
- Formal deviation is not necessary, but alternative 

arrangements should be made.

* Any guideline can be treated as required/mandatory guideline.
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New Security guidelines of MISRA C:2012

 are to improve the coverage of the security concerns highlighted by ISO/ 

IEC 17961:2013

Safety
Coding 

Standard

Security
Coding 

Standard

 MISRA C has evolved…

from automotive standard to industry-wide standard!
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Polyspace PRODUCTS

Compiler Warnings

Bug Findings Formal Methods

Coding Rules, Code Metrics

(No False negative)(False negative)

Error Prevention

Error Detection

Polyspace Bug Finder
Polyspace Code Prover

Polyspace Bug Finder Polyspace Code Prover
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Not all bugs can be statically proven

All Bugs

Statically Detectable

Provable

e.g., divide by zero, 

overflow, illegal 

pointer dereferences

e.g., if(x=y) vs. 

if(x==y), memory 

leaks, partial 

array access

Polyspace Bug Finder

Polyspace Code Prover
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Polyspace supports for Coding Rules Compliance

 MISRA C:2012
– 11 Directives supported

– 156 rules supported

– 6 directives not enforceable

 MISRA C++:2008 

– 185 of the 228 rules supported

 JSF++:2005

– 157 of 234 rules supported
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Polyspace supports for various Code Metrics

 Project Metrics

– Direct Recursions

– Header Files

– Files

– Recursions

 File Metrics

– Comment Density

– Estimated Function Coupling

– Lines

– Lines without comment

 Function Metrics

– Cyclomatic Complexity

– Higher Estimate of Local Variable Size

– Lower Estimate of Local Variable Size

– Language Scope

– Call Levels

– Call Occurrences

– Called Functions

– Calling Functions

– Executable Lines

– Function Parameters

– Goto Statements

– Instructions

– Lines Within Body

– Local Non-Static Variables

– Local Static Variables

– Paths

– Return Statements
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Numerical

 Division by zero, Overflow

 Invalid use of standard library 

integer/floating point routine

 …

Static memory

 Array access out of bounds

 Null pointer

 …

Dynamic memory 

 Memory leaks

 Use of previously freed pointer

 …

Dataflow 

 Write without further read

 Non-initialized variable

 …

Concurrency 

 Data races (atomic, non-atomic)

 Deadlocks 

 …

Resource management 

 Resource leak

 Writing to read-only resource

 …

Programming

 Invalid use of = or == operator

 Declaration mismatch

 …

Good Practice

 Unused parameter

 Large pass-by-value argument

 …

Security 

 Unsafe standard function

 Use of non-secure temporary file

 …

Tainted data

 Array access with tainted index

 Tainted sign change conversion

 …

Types of Defects detected by Polyspace Bug Finder

www.mathworks.com/help/bugfinder/defect-reference.html

http://www.mathworks.com/help/bugfinder/defect-reference.html
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Full list of Runtime checks in Polyspace Code Prover

C run-time checks

 Unreachable Code

 Function not called

 Function not reachable

 Non-initialized local variable

 Non-initialized pointer

 Non-initialized variable

 Return value not initialized

 Division by zero

 Invalid operation on floats

 Invalid shift operations

 Overflow

 Subnormal float

 Absolute address usage

 Illegally dereferenced pointer

 Out of bound array index

 Non-terminating call

 Non-terminating loop

 Correctness condition (array conversion must not extend range, 

function pointer does not point to a valid function)

 Invalid use of standard library routine

 User assertion

Additional run-time checks for C++ only

 Incorrect object oriented programming

 Invalid C++ specific operations

 Function not returning value

 Null this-pointer calling method

 Uncaught exception

www.mathworks.com/help/codeprover/run-time-check-reference.html

http://www.mathworks.com/help/codeprover/run-time-check-reference.html
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Grey – Unreachable / Dead 

Green - Reliable

Orange - Vulnerability

Red - Faulty

Nothing Found

Probable Bug

Purple - coding rule violations

Bug Finder Code Prover S.

How do Bug Finder results differ from Code Prover results? 
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Polyspace demonstration


