
1© 2015 The MathWorks, Inc.

Testing Simulink Models

Fraser Macmillen

2

Test Infrastructure

▪ Model set-up desired parameters, variants, operating point, etc.

e.g. test start up script

▪ Model stimulus desired inputs driving the model

e.g. signal builder block, .xlsx, test sequence

▪ Views of behaviour signal traces, read-outs, animations, etc.

e.g. scopes, simulation data inspector

▪ Verification of behaviour desired behaviour is checked

e.g. verification blocks, post-simulation scripts

3

4

Common challenges:

• Problem: cannot do anything unless a particular script is run first

Solution: use project startup, data dictionaries, models always “ready to go”

• Problem: model is tied to particular means of stimulus (from file, signal builder, etc)

• Solution: use test harnesses + variants

• Problem: changes to the design and test mixed together

• Solution: save test infrastructure externally to your design; separate source control

• Problem: one person’s system is another person’s component

• Solution: model referencing, suitable interfaces

• Problem: performance degraded by infrastructure not needed for “my test”

• Solution: multiple harnesses / variants

5

Simulink Test

6

Why Simulink Test?

Saves you time:

▪ Creating / managing test infrastructure

▪ generating & (re)-running multiple tests

▪ reporting results

▪ a common test environment –

everyone doing things in a consistent manner

Gives you capability:

▪ new ways of authoring test scenarios

▪ easy integration with other tools

(Requirements, Coverage, Test Generation, MATLAB Unit Test, Continuous Integration)

7

8

1. Test Harnesses 2. Test Sequence Block 3. Test Manager

• Synchronized, simulatable test

environment

• Inputs and assessments based on logical,

temporal conditions

• Author, execute, manage test cases

• Review, export, report

Simulink Test Overview

Main Model

Test Harness

Component

under test

Test Stimulus Integration

9

Agenda

▪ Creating Test Harnesses

▪ Creating Test Cases

▪ Testing against Requirements

▪ Reporting

▪ Coverage analysis

▪ Multi-release regression testing

▪ Continuous integration

10

Test Harnesses

11

12

What if you already have a harness model....

13

14

Common questions...

Do I need a separate harness for each test?

15

Test Harness Release Highlights

R2017a:

▪ Test harness import

▪ Create harnesses for components with physical (Simscape) connections

▪ More control over synchronisation

R2017b:

▪ Harness create/re-build callbacks

▪ Model comparison prior to synchronisation

16

Test Cases

&

Test Stimuli

17

Create a test case

using the original signal builder

18

19

What have we done so far....

▪ Created and imported test harnesses

▪ Created a test case for running multiple simulations (iterations) with

different scenarios

20

Common questions...

When should I use iterations vs multiple test cases?

21

Use iterations if:

▪ Same model/harness & test type

▪ Same set-up (callbacks)

▪ Usually run together

▪ Relate to same requirements(s)

▪ Can use fast-restart

Use separate test cases if:

▪ Need independent configuration control

▪ Different model/harness/test type or callbacks

▪ Relate to distinct requirements

▪ Distinct control of coverage

22

Create a test case

using real-world recorded data

23

My data

24

Importing time-stamped data from Excel or text files

% pre-process .xlsx file

% get import options

importOptions = detectImportOptions('SiteWindDataRecorded.xlsx');

% set sheet

importOptions.Sheet = '2011_05_23';

% tell it that Time is in a date-time format

importOptions = setvartype(importOptions,'Time','datetime');

importOptions = setvaropts(importOptions,'Time', 'DatetimeFormat', 'HH:mm:ss.SSS');

% read data in

T = readtable('SiteWindDataRecorded.xlsx',importOptions);

% convert to timetable

TT = table2timetable(T);

% re-sample to 1sec intervals

TTT = retime(TT,'secondly','nearest'); Time WindSpeed WindDirection

0 14.59 214.9

1 15.25 218.2

2 16.46 212.2

3 16.08 207.3

25

26

What have we done so far....

▪ Created and imported test harnesses

▪ Created a test case for multiple simulations (iterations)

▪ Created a test case importing real-world data from Excel using root

import mapping

27

Testing Against Requirements

(Verification)

28

Good quality textural requirements....
Property Description

1 Correct Requirement has no errors and is not an error

2 Compliant with one or more documented upper level requirements (operational, customer needs, etc)

3 Complete Each requirement covers all aspects of the requirement’s intent.

4 Consistent Is not in conflict with any other requirement. Is consistent with the environment

5 Validated Ensures the requirement will lead to the right design, i.e. reflects fully, correctly and objectively system objectives,

scope, operational use, etc

6 Achievable Can be implemented in a cost-effective manner that considers cost and

schedule constraints

7 Unambiguous The requirement has only one possible interpretation.

Questions are:

Could the requirement be read different ways by different people?

What are the different interpretations of the requirement?

8 Verifiable Expected performance or functionality expressed in a manner that allows

verification to be objective, preferably as a result of an observable, ideally measurable, effect

9 Singular Use a unique “shall” in each textual requirement to express a single design

Demand (unique intent).

10 Positive Negative requirements are very difficult, if not impossible, to verify.

Negative requirement may be used only for safety requirements

11 Adequate Each requirement is expressed as a problem statement

i.e. it defines what is needed, not a solution, except if a particular

implementation is a constraint to be resolved by design and test

29

This model had requirements such as...

These are ambiguous, incomplete, and not clearly verifiable

30

Hopefully a bit better is...

31

Example 1:

Using verify() to test against a requirement

32

33

Further considerations...

▪ Testing at an appropriate level

i.e. system – sub system – component

▪ Verification of more complex requirements

34

Example 2:

Using custom criteria to test against a

requirement

35

36

37

Test across multiple operating points?

(trim conditions)

38

39

Incorporating coverage analysis

40

41

Regression & cross-release testing

42

43

Continuous Integration

44

45

Conclusions

46

Benefits of Simulink Test

▪ Ease of creation, organisation & control of test harnesses

▪ Ease of driving your models with data from various sources

▪ Ease of verify() for in-harness/model verification of requirements

▪ Ease of test case set-up for multiple inputs, parameters, operating points, etc.

▪ Ease of reporting

▪ Ease of integration: requirements, coverage, MATLAB Unit Test,

continuous integration, …

47

