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Using an automotive suspension system as an example, this article 
describes tools and techniques in MATLAB®, Statistics Toolbox™, and 
Optimization Toolbox™ that let you extend a traditional design optimi-
zation approach to account for uncertainty in your design, improving 
quality and reducing prototype testing and development effort.  

We begin by designing a suspension system that minimizes the 
forces experienced by front- and rear-seat passengers when the auto-
mobile travels over a bump in the road.  We then modify the design to 
account for suspension system reliability; we want to ensure that the 
suspension system will perform well for at least 100,000 miles. We 
conclude our analysis by verifying that the design is resilient to, or 
unaffected by, changes in cargo and passenger mass.

Performing Traditional Design Optimization
Our Simulink® suspension system model (Figure 1) has two inputs—the 
bump starting and ending height—and eight adjustable parameters. We 
can modify the four parameters that define the front and rear suspension 
system stiffness and damping rate: kf, kr, cf, cr.  The remaining parameters 
are defined by applying passenger and cargo loading to the vehicle, and 
are not considered to be design parameters.
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No design is free from uncertainty or natural variation. 

For example, how will the design be used? How will it 

respond to environmental factors or to changes in manu-

facturing or operational processes? These kinds of uncer-

tainty compound the challenge of creating designs that 

are reliable and robust–designs that perform as expected 

over time and are insensitive to changes in manufacturing, 

operational, or environmental factors.
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Products Used
 
■  MATLAB®

■   Simulink®

■   Statistics Toolbox

■   Optimization Toolbox

Figure 1. Simulink® model of an 
automotive suspension system 
and dialog showing the model’s 
defining parameters. 
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The model outputs are angular acceleration about the center of 
gravity (thetadotddot, θ) and vertical acceleration (zdotdot, z).  Figure 2 
illustrates the model response for our initial design to a simulated 
bump in the road.

Our goal is to set the parameters kf, kr, cf, and cr to minimize the 
discomfort that front- and rear-seat passengers experience as a result of 
traveling over a bump in the road. We use acceleration as a proxy for 
passenger discomfort. The design optimization problem can be sum-
marized as follows:

Objective:	 	Minimize peak and total acceleration (z, θ) 

Design	variables:  Front/rear spring/shock absorber design  
(kr, kr, cf, cr) 

Design	constraints:	 	Car is level when at rest. 
 Suspension system maintains a natural 
frequency of vibration below 2 Hz. 
 Damping ratio remains between 0.3 and 0.5. 

This problem is nonlinear in both response (Figure 2) and design 
constraints.  To solve it, a nonlinear optimization solver is required.  
The Optimization Toolbox solver fmincon is designed specifically for 
this type of problem.  

We begin by casting our optimization problem into the form ac-
cepted by fmincon. The table below summarizes the problem formula-
tion that fmincon accepts and the definition of the suspension problem 
in MATLAB syntax.

The design objective is defined as an M-file function myCostFcn 
that accepts two inputs: the design vector x and simParms (Figure 3).  x 
contains our design variables for the suspension system. simParms is a 
structure that passes in the remaining defining parameters of the 
Simulink model (Mb, Lf, Lr, and Iyy). myCostFcn runs the suspension 

model defined by x and simParms and returns a measure of passenger 
discomfort, calculated as the weighted average of the peak and total 
acceleration, as shown in Figure 3. Passenger discomfort is normalized 

so that our initial design has a 
discomfort level of 1.

Nonlinear constraints are de-
fined in the M-file function 
mynonlcon that returns values 
for c(x) and ceq(x).  The linear 
and bound constraints are de-
fined as shown in the table as 
constant coefficient matrices (A,	
Aeq) or vectors (b, beq, lb, ub).

Figure 3 shows our problem 
defined and solved using the 
Optimization Tool graphical 
user interface (optimtool), 
which simplifies the tasks of 
defining an optimization prob-
lem, choosing an appropriate 
solver, setting solver options, 
and running the solver.  

Using a traditional optimization approach, we found that the opti-
mal design was one where x = [kf, cf, kr, cr] = [13333, 2225, 10000, 
1927].

	 fmincon	Standard	Form	 Suspension	Problem	(MATLAB	M-code)

	Objective																																 m
x
in f (x) myCostFcn(x,simParms) (see Figure 3)

Design	variables x x = [kf, cf, kr, cr]

	Nonlinear	constraints C(x) ≤0 mynonlcon(x,simParms) (see Figure 3) 

 Ceq (x) = 0

Linear	constraints A . x ≤b A   = []; % none for this problem 

 Aeq . x=beq b   = []; 

  Aeq = [Lf 0 -Lr 0]; % level car 

  beq = 0;

Bound	constraints lb≤x≤ub lb = [10000; 100; 10000; 100]; 

  ub = [100000; 10000; 100000; 10000];

: :
: :

Figure 2.  Simulation results for the initial design.
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Figure 4 shows a standard Optimization Toolbox solution progress 
plot.  The top plot shows the current value of the design variables for the 
current solver iteration, which at iteration 11 is the final solution.  The 
bottom plot shows the objective function value (passenger discomfort 
relative to the initial design) across solver iterations.  This plot shows 
that our initial design (iteration 0) had a discomfort level of 1, while the 
optimal design, found after 11 iterations, has a discomfort level of 0.46 
– a reduction of 54% from our initial design.

Ensuring Suspension System Reliability 
Our optimal design satisfies the design constraints, but is it a reliable 
design?  Will it perform as expected over a given time period?  We want 
to ensure that our suspension design will perform as intended for at 
least 100,000 miles.  

Figure 4.  Solution progress plot showing the final value of x (top) and the 
objective function value as a function of solver iteration (bottom). 

Figure 3.  Design problem defined in Optimi-
zation Tool, showing the suspension problem, 
solver option settings, and final results.
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Figure 5.  Fit of a Weibull distribution to five-year survival data for similar 
suspension system designs.  The horizontal axis is the number of miles 
traveled, and the vertical axis is the survival rate (1- failure rate). 

To estimate the suspension’s reliability, we use historical mainte-
nance data for similar suspension system designs (Figure 5).  The hori-
zontal axis represents the driving time, reported as miles.  The vertical 
axis shows how many suspension systems had degraded performance 
requiring repair or servicing.  The different sets of data apply to suspen-
sion systems with different damping ratios.  The damping ratio is de-
fined as

 η=      c
 2√kM

where c is the damping coefficient (cf or cr), k is the spring stiffness (kf 
or kr), and M is the amount of mass supported by the front or rear sus-
pension. The damping ratio is a measure of the stiffness of the suspen-
sion system.  

We fit Weibull distributions to the historical data using the Distribu-
tion Fitting Tool (dfittool). Each fit provides a probability model that 
we can use to predict our suspension system reliability as a function of 
miles driven.  Collectively, the three Weibull fits let us predict how the 
damping ratio affects the suspension system reliability as a function of 
miles driven.  For example, the optimal design found previously has a 
damping ratio for the front and rear suspension of 0.5.  Using the plots 
in Figure 5, we can expect that after 100,000 miles of operation, our 
design will have 88% of the original designs operating without the need 
for repair.  Conversely, 12% of the original designs will require repair 
before 100,000 miles.  

We want to improve our design so that it has a 90% survival rate at 
100,000 miles of operation.  We add this reliability constraint to our 
traditional optimization problem by adding a nonlinear constraint to 
mynonlcon.

We solve the optimization problem as before using optimtool. The 
results, summarized in Figure 6, show that including the reliability 
constraint changed the design values for cf and cr and resulted in a 
slightly higher discomfort level. The reliability-based design still per-
forms better than the initial design.

% maximum probability of shock absorber failure

Plimit = 0.90;

A  = @(dampRatio) -1.0129e+005. *...

 dampRatio.̂ 2 -28805. * dampRatio + 2.18 31e+005;

B  = @(dampRatio) 1.6865. * dampRatio.̂ 2 -1.8534. *...

 dampRatio + 4.1507;

Ps = @(miles, dampRatio) 1 -...

 wblcdf(miles, A(dampRatio), B(dampRatio));

% Add inequality constraint to existing constraints

% keep original constraints

c = [c;

% front reliability constraint

Plimit- Ps(cdf, Mileage);...

% rear reliability constraint

Plimit- Ps(cdr, Mileage)];

Figure 6.  Summary of results showing how design parameters 
trade off with performance. 
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Optimizing for Robustness 
Our design is now reliable—it meets our life and design goals—but it may 
not be robust.  Operation of the suspension-system design is affected by 
changes in the mass distribution of the passengers or cargo loads.  To be 
robust, the design must be insensitive to changes in mass distribution.  

To account for a distribution of mass loadings in our design, we use 
Monte Carlo simulation, repeatedly running the Simulink model for a 
wide range of mass loadings at a given design.  The Monte Carlo simula-
tion will result in the model output having a distribution of values for a 
given set of design variables.  The objective of our optimization problem 
is therefore to minimize the mean and standard deviation of passenger 
discomfort.

We replace the single simulation call in myCostFcn with the Monte 
Carlo simulation and optimize for the set of design values that minimize 
the mean and standard deviation of total passenger discomfort.  We’ll 
assume that the mass distribution of passengers and trunk loads follow 
Rayleigh distributions and randomly sample the distributions to define 
conditions to test our design performance.

The total mass, center of gravity, and moment of inertia are adjusted to 
account for the changes in mass distribution of the automobile.

The optimization problem, including the reliability constraints, is 
solved as before in optimtool. The results are shown in Figure 7. The 
robust design has an average discomfort level that is higher than that in 
the reliability-based design, resulting in a design with higher damping 
coefficient values.

The discomfort measure reported in Figure 7 is an average value for the 
robust design case. Figure 8 displays a scatter-matrix plot that summa-
rizes variability seen in discomfort as a result of different mass loadings 
for the robust design case.

The diagonals show a histogram of the variables listed on the axis. The 
plots above and below the diagonal are useful for quickly finding trends 
across variables.  The histograms for front, back, and trunk represent the 
distribution of the inputs to our simulation.  The histogram for discom-
fort shows that it is concentrated around the value 0.47 and is approxi-
mately normally distributed.  The plots below the diagonal do not show a 
strong trend in discomfort with trunk loading levels, indicating that our 
design is robust to changes in this parameter.  

nRuns = 10000;

% front passengers - adults (kg)

front = 40 + raylrnd(40, nRuns, 1);

% rear passengers – includes children

back = 1.36 + raylrnd(40, nRuns, 1);

% additional mass for luggage (kg)

trunk = raylrnd(10, nRuns, 1);
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% total mass

mcMb = Mb + front + back + trunk;

% update center of mass

mcCm = (front. * rf - back. * rr - trunk. * rt)./mcMb;

% Adjust moment of inertia

mcIyy = Iyy + front. * rf.̂ 2 + back. *...

 rr.̂ 2 + trunk. * rt.̂ 2- mcMb. * mcCm.̂ 2;

Figure 7.  Summary of design optimization results. 

Figure 8.  Selected results from the robust design solution.  Plotted results include 
front-passenger loading, back-passenger loading, cargo or trunk loading, and 
normalized passenger discomfort. 



�    MATLAB Digest  www.mathworks.com TM

There is a definite trend associated with the front loading on discom-
fort. Front loading appears to be approximately linear with a min of 
0.43 and a max of 0.52.  A trend between back loading and discomfort 
can also be seen, but from this plot it is difficult determine if it is linear.  
From this plot, it is difficult to determine whether our design is robust 
with respect to back loading.

Using a cumulative probability plot of the discomfort results 
(Figure 9), we estimate that 90% of the time, passengers will 
experience less than 50% of the discomfort they would have 
experienced with the initial design. We can also see that our new 
design maintains a normalized level of discomfort below 0.52 nearly 
100% of the time. We therefore conclude that our optimized design 
overall is robust to expected variation in loadings and will perform 
better than our initial design.

Design Trade-Offs
This article showed how MATLAB, Statistics Toolbox, and Optimiza-
tion Toolbox can be used to capture uncertainty within a simulation-
based design problem in order to find an optimal suspension design 
that is reliable and robust.

We began by showing how to reformulate a design problem as an 
optimization problem that resulted in a design that performed better 
than the initial design. We then modified the optimization problem to 
include a reliability constraint.  The results showed that a trade-off in 
performance was required to meet our reliability goals.

We completed our analysis by including the uncertainty that we 
would expect to see in the mass loading of the automobile.  The results 
showed that we derived a different design if we accounted for uncer-
tainty in operation and quantified the expected variability in perfor-
mance.  The final design traded performance to maintain reliability 
and robustness.  ■

Figure 9.  Cumulative distribution plot of discomfort results. 
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