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Parallel computing techniques can help re-
duce the time it takes to reach a solution. To 
derive the full benefits of parallelization, it is 
important to choose an approach that is ap-
propriate for the optimization problem. 

This article describes two ways to use the 
inherent parallelism in optimization prob-
lems to reduce the time to solution. The 
first example solves a mathematical prob-
lem using the parallel computing option in  
Optimization Toolbox™, and requires no 
code modification. The second, a practical 
engineering optimization problem, requires 
a single-line change in code. Both examples 
use Parallel Computing Toolbox™ and 
MATLAB Distributed Computing Server™ 
to automate and manage the parallel com-
puting tasks.

Parallel Optimization with 
Optimization Toolbox
In a typical optimization, an iterative 
search procedure is used to find a mini-
mum value of a given function —for ex-
ample, using a gradient-based algorithm to 

find a minimum value of the peaks func-
tion in MATLAB® (Figure 1). 

Gradient estimation is often the most 
time-consuming computation during opti-
mization. In a single iteration, the optimi-
zation solver estimates the local gradient of 

Engineers, scientists, and financial analysts frequently use optimization  

methods to solve computationally expensive problems such as smoothing  

the large computational meshes used in fluid dynamic simulations, performing  

image registration, or analyzing high-dimensional financial portfolios. How-

ever, computing a solution can take anywhere from hours to days. 

Improving Optimization Performance with  
Parallel Computing

the function and uses that information to 
determine the direction of the search and 
the magnitude of the step to the next point 
in the search. This process is repeated until 
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Figure 1. Using a gradient-based optimization solver to search for a minimum value.
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the solver finds a minimum value or reaches 
a predefined time or iteration limit. 

The gradient estimation step, which is 
often performed using an approximation 
method, such as finite differences, requires 
several function evaluations near the cur-
rent point. Typically, N function evalua-
tions are required, where N is the number 
of variables, or the dimensionality of the 
problem. As N increases, so do the number 
of function evaluations for each iteration 
and the time to solution.

Figure 2 shows how you can perform 
computations in parallel to accelerate gra-
dient estimation. The N function evalua-
tion used to estimate the gradient when 
performed on a single MATLAB worker 
would be executed serially. 

Whereas in the serial approach the N 
function evaluations occur one after the 
other, in the parallel approach the com-
putations are distributed across MATLAB 
workers, and several function evaluations 
can occur simultaneously. We can speed 
up gradient estimation as long as the cost of 
distributing the function evaluation across 

multiple workers is less than the execution 
time of N objective (and constraint) func-
tion evaluations. The actual solution time 
depends on the objective/constraint func-
tion execution speed, the computer pro-
cessing speed, available memory, current 
load, and network speed. 

An ElectroStatics Examplei

This example illustrates how to formu-
late and solve an optimization problem in 
MATLAB. Consider N electrons in a con-
ducting body (Figure 3). The electrons ar-
range themselves to minimize their potential 
energy subject to the constraint of lying in-
side the conducting body. At the minimum 
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Figure 2. Serial and parallel approaches to gradient estimation.

Figure 3. Conducting body and electrons.

i Inspired by Dolan, Moré, and Munson, “Benchmarking Optimization Software with COPS 3.0”, Argonne National Laboratory Technical Report.  
ANL/MCS-TM-273, February 2004.
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total potential energy, all the electrons lie 
on the boundary of the body. Because the 
electrons are indistinguishable, there is no 
unique minimum for this problem (permut-
ing the electrons in one solution gives another 
valid solution).

The optimization goal is to minimize 
the total potential energy of the electrons 
subject to the constraint that the electrons 
remain within the conducting body. The ob-
jective function, potential energy, is the sum 
of the inverses of the distances between each 
electron pair (i,j = 1, 2, 3,… N):

The constraints that define the boundary 
of the conducting body are

As written, the first inequality is a non-
smooth nonlinear constraint because of 
the absolute values on x and y. Absolute 
values can be linearized to simplify the 
optimization problem. This constraint 
can be written in linear form as a set 
of four constraints for each electron, i. 
 

The indices 1, 2, and 3 refer to the x, y, and 
z coordinates, respectively.

This problem can be solved with the 
nonlinear constrained solver fmincon in 
Optimization Toolbox. Figure 4 shows the 
problem formulation in MATLAB. Note 
that in defining the objective function, 
sumInvDist, the statement pause(t) was 
added. This changes the time taken to exe-
cute sumInvDist, letting us determine 

how the execution time changes the solu-
tion time. 

We execute the optimization problem on 
a single MATLAB worker. For convenience, 
we define speed-up as the ratio of the time 
it takes to solve the problem on 1 worker 
relative to the time it takes to solve the same 
problem on N workers. Thus, for any prob-
lem running on a single worker, the speed-
up is defined as 1. When the same problem 
is run on more than one worker, a speed-up 
greater than one denotes a reduction in so-
lution time and a speed-up less than one de-
notes an increase.

To use the parallel computing capabil-
ity in Optimization Toolbox, we change 

the ‘UseParallel’ option from the default, 
‘Never,’ to ‘Always’, enable the desired num-
ber of compute nodes with the matlabpool 
command, and run the optimization solver 
as before (Figure 5).

This example runs on two workers and 
is 20% slower than the single-worker case. 
The evaluation time of N objective and con-
straint functions is on the order of 0.5 milli-
seconds. A single evaluation of the objective 
function and the constraint function takes 
about 0.5 milliseconds. Because the evalu-
ations take so little time, the overheads as-
sociated with farming out data and compu-
tations outweigh any gains that are realized 
by running the code in parallel. As a result, 

Figure 4. Problem formulation 
in MATLAB.

Figure 5. Running the optimization solver using the parallel computing capability in Optimization Toolbox.

problem.options = optimset(problem.options,’UseParallel’,’Always’);

matlabpool open 2

[x,fval,exitflag,output] = fmincon(problem);
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distributing computations to run in parallel 
is slower than running the problem serially. 

This example shows that for optimiza-
tion problems to benefit from running the 
computations in parallel, the cost associated 
with the function evaluations with gradient 
estimation must be greater than the overhead 
costs associated with data and code transfer.

To further understand the trade-offs as-
sociated with the objective function execu-
tion time, number of MATLAB workers, and 
number of variables (electrons), we ran this 
problem with a pause time (t) ranging from 0 
to 0.4 seconds, different workers from 1 to 32, 
and number of electrons ranging from 8 to 
20. Figures 6a and 6b show the results plotted 
for t = 0 and 0.1 seconds, respectively.

Figure 6a shows how the number of elec-
trons changes the speed-up. For 8 and 10 
electrons, the overhead cost of more work-
ers reduced the speed-up. For 16 electrons, 
the overhead cost fell below the function 
evaluation cost, and we saw a positive effect 
on the speed-up for most workers. The aver-
age time to evaluate one objective function 
was on the order of 1 millisecond on a single 
worker. The maximum speed-up occurred 

at around 8 workers. Increasing the num-
ber of workers increased the communica-
tion overhead and eventually eliminated the 
benefit of using parallel computing.

Figure 6b shows how the results change 
when the objective function evaluation time 
significantly exceeds the overhead costs. A 
rapid increase in speed-up is again observed 
around 8 workers. Notice that the maximum 
reductions in the curve for the 8-electron case 
and the 16-electron case are 8 workers and 16 
workers, respectively. This increase is a result 
of balancing the number of parallel compu-
tations that can be performed with the same 
number of workers. For the 8-electron case, 

8 workers resulted in the greatest increase. A 
similar trend is seen for the 16-electron case. 

User-Defined Parallel 
Optimization Problem
As we have seen, the time required to 
evaluate the objective strongly influences 
the solution time. Therefore, one of the ap-
proaches we can take is to look for parallel-
ism within the objective function and the 
constraint function—that is, to parallelize 
the objective or the constraint function.

We will take this approach by distribut-
ing computations within the objective func-
tion for the problem shown in Figure 7. The 

Figure 6b. Results for pause time t = 0.01 seconds.Figure 6a. Results for pause time t = 0 seconds.

Figure 7. Vehicle suspension model and simulation results for an empty vehicle.
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goal of this problem is to design a suspen-
sion system that minimizes the discomfort 
the driver would experience when traveling 
over a bump in the road. At the same time, 
we must account for uncertainty in the mass 
of the driver, passengers, and trunk load-
ings. We can modify the four parameters 
that define the front and rear suspension 
system stiffness and damping rate: kf, kr, 
cf, cr. The masses of the driver, passengers, 
and trunk loadings are uncertain and have a 
normal distribution assigned to them. 

A Monte-Carlo simulation is performed to 
capture the different vehicle loadings. The 
model outputs are angular acceleration about 
the center of gravity (thetadotdot, ··θ) and 
vertical acceleration (zdotdot, ··z). 

The objective function, myCostFcnRR, 
contains a Monte-Carlo simulation used to 
evaluate the mean and standard deviation 
of acceleration that the passengers would 
experience (Figure 8). The goal is to mini-
mize the mean and standard deviations.

In a Monte-Carlo simulation, each run 
is independent and therefore can benefit 
from parallel computation. To convert the 
problem from serial to parallel, we sim-
ply replace the for loop construct with 
the parfor (parallel for loop) construct 
(Figure 9). The objective statements inside 
the parfor loop can then run in parallel, 

speeding up the objective function evalu-
ation time.

The optimization problem was run for 
three different values of nRuns, the num-
ber of points to evaluate in the Monte-
Carlo simulation. The results show that 
parallelizing the objective function yielded 
substantial performance gains (Figure 10). 

Figure 8. Objective function used to run a 
Monte-Carlo simulation within the optimi-
zation process.

Figure 9. Objective function modified to execute in parallel.

Figure 10. Results for the suspension system design problem.
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Selecting a Parallelization 
Method
As the results show, it is best to select 
a parallelization method based upon 
where computational expense is encoun-
tered in the optimization problem. The 
first example showed that it is possible 
to see a reduction in performance even 
after distributing computations if the 
objective/constraint function execution 
time does not exceed the communication 
overhead. For the problem and hardware 
configuration tested, we would need an 
execution time of at least one millisec-
ond to see any benefit from parallelizing 
the problem. 

The second example showed that the 
benefits obtained by performing parallel 
computations can depend on the problem 
being solved. Using the parallelism within 
the objective function—that is, parallel-
ising the objective function itself—result-
ed in better performance than would have 
been possible using the parallel comput-
ing option in Optimization Toolbox. In 
this example, the execution time of the 
objective function was the slowest part of 
the optimization problem, and speeding 
up the objective function resulted in the 
greatest reduction in solution time. 

In summary, when selecting a parallel - 
i z ation approach it is important to consider 
the number of available workers and the 
execution time of the objective/constraint 
function relative to overheads associated 

with distributing computations across 
multiple workers The built-in support in 
Optimization Toolbox is beneficial for 
problems that have objective/constraint 
functions with execution times greater 
than network overhead. However, parallel-
izing the objective/constraint function it-
self can be a better approach if it is the most 
expensive step in the optimization prob-
lem and can be accelerated by parallelizing 
the objective function. ■
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