
 2007-01-0780

Creating Human Machine Interface (HMI) Based Tests within
Model-Based Design

Chris Fillyaw, Jonathan Friedman, and Sameer M. Pra bhu
The MathWorks

Copyright © 2007 The MathWorks, Inc.

ABSTRACT

Many of the multimedia and convenience features in
today’s passenger vehicles involve Human Machine
Interfaces (HMIs), such as the radio face plate or the
remote key fob. The functional requirements for these
systems are often written in terms of the customer
interaction with the interface device. In the past, design
engineers would not begin to test requirements for these
systems until prototype hardware was available.
However, many product development organizations are
shifting from this hardware-based traditional
development cycle, which relies on designing via a
prototype and test iteration, to Model-Based Design.
Unfortunately, testing systems with complex human
machine interface requirements becomes less intuitive
when the prototypes are removed from the design
process, because the test cases must be scripted into
the modeling environment instead of being applied
directly to a prototype of the interface device. In this
paper we will show how engineers can create a “soft”
representation of an automotive HMI and record the test
procedure when specified as a series of interactions with
the interface, such as button presses. Next, we will
demonstrate how the test procedure can be captured
and exported to an editable file for re-use with Model-
Based Design. Lastly, we will show how a test file can
be used to populate a test harness within the Simulink®
software environment.

INTRODUCTION

The need to bring innovative, high-quality automobiles
to market faster and at the same time comply with
stringent regulatory requirements is driving the
increased use of models during the design and
realization process. The ability to model and simulate
various automotive systems prior to building hardware
enhances the product development process by allowing
manufacturers to test whether the system meets
requirements using virtual rather than physical
prototypes. By using such virtual prototypes, in the form
of models, designers can explore multiple design
alternatives to optimize the design and discover errors
in the system early on. Thus, Model-Based Design

provides efficiencies in product development that enable
companies to deliver products on time, to remain within
budget, and to fulfill initial requirements.[1] The latest
Model-Based Design tools can also generate prototype
and production code from a model automatically,
significantly decreasing development time. As a result,
Model-Based Design is an integral part of the
automotive systems development process.

In this paper we explore the application of Model-Based
Design for the development of multimedia and
convenience features in today’s passenger vehicles.
The MATLAB® and Simulink® software environments
are used throughout the design process for developing
and testing these systems, because they provide high-
level formalisms that allow the modeling of such
systems and also allows automatic generation of code to
test and implement these systems. [2] [3]

In this paper we discuss in detail the application of these
tools to the development of a specification of a radio
face plate as an example of typical multimedia system
in a car. We also illustrate the testing of the system to
ensure that the design meets requirements and to
identify inconsistent requirements. The paper is
organized as follows: Section 2 describes in detail the
problem framework that is used throughout this paper,
and discusses Model-Based Design concepts and how
they can be applied to the same problem. To conduct a
detailed and realistic testing of the radio face plate
specification it is necessary to build a Human Machine
Interface (HMI) to the specification. Section 3 focuses
on the issues involved with building such a HMI. Section
4 then deals with using this HMI to test the specification
and also discuses creating test sequences based on the
HMI interactions, which can then be reused not only for
testing the specification but also the final
implementation. The conclusions are drawn in Section
5.

ROLE OF EXECUTABLE SPECIFICATIONS IN
THE DEVELOPMENT OF MULTIMEDIA AND
CONVENIENCE FEATURES

It is estimated that electronics and software content will
make up 40% of a vehicle’s cost by 2010.[4] In the early
days, electronics were used primarily to ensure that
vehicles met stringent emissions and fuel economy
requirements by replacing conventional mechanical
systems with electronic systems. Currently, in addition
to the focus on emissions and fuel economy, automotive
manufacturers use electronics to introduce advanced
multimedia and convenience features to attract
technology-savvy buyers. These features focus on
assisting the driver through technologies such as hands-
free phone operation, using the car’s radio and
Bluetooth networking, and also with providing relevant
information to the driver such as upcoming traffic
information and the need to change the planned route to
the destination. In addition to assisting the driver, these
systems also entertain passengers through on-board
systems such as satellite radio, DVD players, and so on,
which can be accessed through a common interface.
Automotive manufacturers see such systems as a key
source for differentiating themselves from the
competition, and also as a lucrative revenue stream. As
such there is an increased emphasis on developing and
deploying these systems to meet consumers’ varying
requirements, while being simple enough to operate and
use, and of high enough quality to avoid the need for
costly recalls and software fixes.

ISSUES IN MULTIMEDIA AND CONVENIENCE
FEATURES DEVELOPMENT

A key aspect of the multimedia and convenience
features is that they have to be easy to use. Thus a
significant amount of time and effort is devoted to
designing the HMIs for these systems in addition to
designing the underlying electronics. An example of
such a system is the radio face plate or the remote key
fob commonly found in automobiles today. The starting
point for the design of these systems is usually their
functional requirements, which are often written in terms
of the customer interaction with the interface device. For
example, it is common to have requirements for the
radio face plate such as:

Requirement 1: When any radio preset button is
depressed for less than three seconds, the radio shall
tune the radio receiver to the station value stored in the
radio preset.

Requirement 2: When any radio preset button is
depressed for three seconds or more, the value of the
preset shall be set to the current station to which the
radio receiver is tuned.

A typical development process takes these requirements
and proceeds through the system design and
implementation stages to test the system to determine if

it meets the requirements or not. If it does not meet the
requirements, an expensive and time consuming
debugging process follows to determine if the
implementation is faulty or if one or more requirements
are inconsistent with each other. In either case, because
functional and performance testing does not begin until
prototype hardware is available, there is a significant
time lag to turn around design changes to meet
requirements changes or fix design errors. To address
these issues, many product development organizations
are shifting from this hardware-based traditional
development cycle, which relies on designing with a
prototype and test iteration, to Model-Based Design.

INTRODUCTION TO MODEL-BASED DESIGN

Model-Based Design lets development organizations
address the challenges of increasing product
complexity, more stringent performance requirements,
and shorter product development cycles. By using
models in the early design stages, engineers can create
what are known as "executable specifications" that
enable them to immediately validate and verify
specifications against the requirements. Validation
ensures that the requirements are correct and that they
represent the intended behavior. Verification ensures
that the outputs of each step satisfy the step’s inputs
(i.e., the system satisfies its requirements). Thus,
Model-Based Design allows engineers to detect errors
earlier in the development process when the cost to fix
them is less expensive. Further down the design
process, models can be used to communicate between
engineering teams with different specializations,
allowing them to work together and to communicate
between stages in the overall process. Moreover, initial
design models can be incrementally extended to include
increasing implementation detail. Thus, Model-Based
Design allows engineers to explore different design
alternatives early in the design process using the
models which are part of the executable specification.
After the concept phase is completed, the same
executable specification (containing the model) is used
by the next team which may need to include detailed
implementation effects into the model. This process
continues with each part of the design team elaborating
the same model used by the previous team and testing
their contribution to the design. In contrast, a document-
centered approach requires each design stage to
generate new artifacts or design documents to
communicate the state of the design as it passes from
one stage to the next.

In addition to elaborating the model at each design step
to minimize the non-value added work and possible
introduction of errors, many companies are using the
models for multiple purposes. For example, the same
models used to communicate the design for software or
hardware design can be used for hardware-in-the-loop
testing. , Moreover, these activities can be automated
so as to prevent introduction of errors that can occur
during manual implementation and realization tasks,
and further shortens the path to product delivery by

generating code for testing, calibration, and the final
production. An important benefit of Model-Based Design
is the traceability of design decisions all the way down to
the implementation, so test results can be directly
interpreted as high-level design decisions. Finally, even
though electronic models are easier to navigate than
paper documents, the formal system design process still
requires detailed documentation. Advanced tools allow
automatic generation of this documentation from a
model, while Model-Based Design forces the design
process as well as the final product to be documented
for maintenance and future developments. The next
section discusses how Model-Based Design can be used
for developing a radio face plate system.

MODEL-BASED DESIGN FOR RADIO FACE PLATE
DEVELOPMENT

MATLAB and Simulink are used throughout the design
process because they provide high-level formalisms
such as Stateflow® [5] to support detailed modeling of
both the radio face plate specification and the testing
infrastructure required to test the face plate. A radio face
plate is typically designed to meet requirements, some
of which are mentioned below:

Power is turned on: When the battery is powered (key in
accessory mode or key on), the audio unit goes into the
'PowerOn' mode. The system enters the 'Standby' state.

System is turned on: When the user turns the system
on, the system moves into the 'On' state.

These requirements are typically captured in paper
form. Traditionally, to verify if the embedded controller
drives the system into the standby state when the
ignition state is key-on, we need to wait for prototype
hardware. Within Model-Based Design, , we can specify
these requirements using Stateflow, which not only
provides us a visual interpretation of the system
functionality but also allows us to test the functionality
virtually. Stateflow is used to elegantly model the
discrete event algorithm by exploiting the hierarchical
state behavior of Stateflow (for example, the Power On
state has two sub-states, viz., Standby and On; also On
itself may have sub-states), as shown in Figure 1.

Figure 1: Stateflow® representation of radio face plate
logic.

The Stateflow model then becomes the heart of the
executable specification of the system. Since this
specification is executable, unlike traditional paper
specifications, the behavior of the system can be
verified by simulating the model Simulation is achieved
by submitting the model to a variety of inputs that
correspond to user commands, to verify that the
requirements are correctly captured in the Stateflow
diagram. Inputs can be created using the Signal Builder
functionality in Simulink, as shown in Figure 2. The
animation capability of Stateflow provides visual
feedback regarding the correct functionality of the
algorithm.

Figure 2: Test case representing user commands.

THE NEED FOR A HUMAN MACHINE
INTERFACE (HMI) IN AN EXECUTABLE
SPECIFICATION

Executable specifications often specify the desired
behavior of a system to external inputs, as described
above. For example, in a “throttle by wire system,” the
driver’s input to the algorithm is via the throttle pedal.
The executable specification then specifies the desired

response of the system to this input. In this case, there
is only a single user input to the system. In general,
these types of systems with a small number of human
inputs can be captured using a time-based trace, or
modeled using common constructs such as steps and
ramps. However, there is a class of systems in
automotive engineering that can have multiple inputs or
a series of multiple inputs from the driver or passengers
over time. In these cases, it is neither practical to try to
model the inputs, nor to modify the hardware to create a
trace of the user inputs. Instead, it makes sense to
create a graphical representation of the HMI hardware to
be included with the executable specification. Through
the inclusion of the HMI, engineers can interact with the
specified algorithm using the same form of input as the
end user.

For example, many of the multimedia systems in today’s
passenger vehicles involve sophisticated HMIs that
require a series of inputs from the user to achieve their
desired result, e.g., programming the radio frequency
preset buttons or using a navigation system. The
functional requirements for these systems are often
written in terms of the customer interaction with the
interface device. For example, it is common to have
requirements such as:

1. When any radio preset button is depressed for less
than 3 seconds, the radio will tune the radio receiver
to the station value stored in the radio preset.

2. When any radio preset button is depressed for 3

seconds or more, the value of the preset will be set
to the current station to which the radio receiver is
tuned.

Traditionally, such requirements are tested using
prototype hardware. However, since executable
specifications allow for testing prior to hardware
availability, engineers now must develop test scripts to
exercise the algorithm. Unfortunately, since there are
hundreds of these series of HMI inputs required to fully
test a typical radio, modeling the inputs as a time-based
test vector can be time consuming and monotonous. To
address this issue, engineers add graphical or “soft”
representations of the proposed HMI to the executable
specification to allow design and test engineers to
interact with the algorithm.

The steps of the test procedure can then be recorded
and edited (if necessary) to be used later to automate
the testing process for future design iterations within
Model-Based Design.

USING HMI’S TO CREATE TEST VECTORS

To demonstrate the capability of using an HMI to create
test vectors, an automotive radio system will be used
throughout this example. The radio is controlled through
a face plate HMI containing a number of buttons and a
display. This example focuses on developing the “soft”

HMI representation and using it to create test vectors
examining the following topics:

1. Develop the “Soft” HMI representation.

2. Capture the user inputs to the HMI and populate a
Signal Builder block with the test vector.

3. Exercise the model with the test vectors, capture the
system response, and populate the Signal Builder
block to form one test case with acceptance criteria.

4. Create test vectors based on requirements
specifications.

Figure 3 displays the “soft” HMI representation that will
be constructed in this example providing the capability
to create test vectors.

Figure 3: Radio face plate HMI.

The CD player system model shown in Figure 4 is the
model under test. On the far left, the “TestHarness”
subsystem contains a Simulink Signal Builder block and
on the right, the “Verification” subsystem contains the
verification blocks. The role of the Signal Builder and
verification blocks should be evident after following the
example presented in this paper. Throughout this
example, the contents of the Signal Builder block will be
generated from the button presses on the HMI and
through exercising the model to capture acceptance
criteria.

Figure 4: CD player system model.

The MATLAB Graphical User Interface Development
Environment (GUIDE) provides a set of tools for

creating HMIs. These tools provide an environment to
layout and program HMIs.

GUIDE provides users with a palette to drag and drop
various input and display elements, such as buttons,
text boxes, and gauges. GUIDE ships with a set of
commonly used input and display components, but for
advanced applications, GUIDE can incorporate images
into the HMI and can be extended through the use of the
Microsoft ActiveX support when running MATLAB in the
Microsoft Windows environment. The ActiveX extension
allows users to create or purchase custom input or
display components. All the components used to
develop the radio face plate in this demonstration are
shipped with GUIDE, excluding the graphics.

For the radio face plate HMI, a bitmap image of the
physical face plate is used to provide the look and feel
of the physical face plate, as well as to create a
template as to where buttons and displays need to be
placed. Figure 3 displays the bitmap that represents the
physical face plate.

For each button that needs to be a testable input to the
system, push buttons from the GUIDE palette are
placed over top of the button represented in the image.
In this case, the ON/OFF button is a desired input and a
push button is sized and positioned appropriately to
exactly cover the button represented in the physical face
plate image, as shown in Figure 5.

Figure 5: GUIDE push button.

The size and position of the buttons and displays
are dynamic and can be altered by a manual drag
and drop or via a MATLAB script for programmatic
sizing and positioning. When the GUIDE HMI is
published, the pushbutton will sit on top of the
background image as shown in
Figure 6.

Figure 6: Pushbutton on physical face plate.

To keep the original look of the physical HMI, the button
can be skinned with an image as well. For each button
that is desired as an input to the system, the section of
the image that represents the button is cut and saved in
an image file for later use as a skin for the pushbutton in
GUIDE. Figure 7 displays the published GUIDE HMI
with the skinned ON/OFF image.

Figure 7: Face plate with skinned ON/OFF button.

The ON/OFF button is now an active button and when
pressed by the user, an animation representing the
button being pushed down can be noticed. The same
procedure can be reused for each button that is desired
to represent an input to the system.

Here is the complete set of inputs chosen to be active
buttons in this example:

� ON/OFF
� CD
� Eject
� REW
� FWD
� CD Slot
� Battery Connect
� Record button and LED (Used to trigger

capturing the button presses)

Figure 8 displays the completed GUIDE layout for the
radio face plate that includes all of the buttons
positioned and sized based on the set of desired system
inputs. Figure 9 displays the published radio face plate
HMI and the finished product that the user will interact
with to create test cases to exercise the model.

Figure 8: GUIDE face plate example.

Figure 9: Published radio face plate HMI.

When the HMI is published, GUIDE automatically
creates a MATLAB script template that contains callback
functions for each active button. Each time a button is
pressed, the callback function is called processing the
content of the function. The content of the callback
function is specified through MATLAB programming
providing the capability to perform actions as simple as
toggling a value or an even more sophisticated action
such as activating a mechanism to capture the user
inputs.

As previously mentioned, the overall goal is to be able
to create test vectors through interaction with the
representative HMI. Essentially, as the user interacts
with the HMI, this interaction needs to be captured so
the test vectors can be applied to the model for
continuous reuse as the model evolves. The MATLAB
code shown below demonstrates how to create a time
series vector for each button.

% --- Executes on button press in
power_pushbutton.
function
power_pushbutton_Callback(hObject, …
 eventdata, handles)

handles.states.power_request(handles.
index.power) =…
~handles.states.power_previous;

 handles.states.power_previous =…
handles.states.power_request(handles.
index.power);

handles.timers.power(handles.index.power)
= toc;
 handles.index.power =
handles.index.power + 1;

In this example, we have chosen seven buttons from the
radio face plate that are desired inputs to the system so
the end result will be seven time series vectors that can
be saved for later reuse.

On the upper right hand corner of the HMI, a “Record”
button is present with an LED indicator. When the user
decides that they would like to create a test vector, the
“Record” button is pressed lighting the LED to start the
recording process. Pressing the record button merely
starts a timer at t=0 and the then system waits for inputs
from the user.

Focusing on the ON/OFF button case, the MATLAB
code previously shown represents the callback function
to capture the change of the ON/OFF button value and
time stamp when the change occurred creating the time
series vector. MATLAB contains a capability to generate
time stamps through the use of the tic and toc
commands. Pressing the record button calls the tic
command and each button press calls the toc to obtain a
time stamp. Since each button on the HMI is a toggle
button, the same code snippet can be reused with
minimal changes for each active button.

Once the desired sequence of button presses has been
completed, simply pressing the record button again will
stop the recording process and export each of the seven
time series vectors to the Simulink Signal Builder block.
The Simulink Signal Builder block contains an API that
can be accessed through MATLAB to completely
automate exporting the time series vectors to the Signal
Builder block. Each time a test case is captured using
this code, the newest time series is automatically
appended to the existing time series in the Signal
Builder block. This automatic appending, allows a suite
of test vectors to be created.

Figure 10 shows the Simulink Signal Builder block
populated with the user inputs. Also note that there are
place holders for the test results, or acceptance criteria,
once the model has been exercised with the input
signals. Creating the acceptance criteria for each of the
tests will be discussed later.

Figure 10: Recorded input test vectors.

Once the Signal Builder block has been populated with
the input signals, the system model can be simulated
while exercising the system with the inputs that were
captured from the HMI. The suite of test vectors can be
continuously reused to evaluate the system as the
engineer uses the model to iterate through design
alternatives. If a design change results in an alteration
to a test vector, the engineer could either graphically
edit the signals in the Signal Builder block through the
Signal Builder interface, or could use the HMI and

generate another test case and add it to the test suite,
as described in the previous section.

With the ability to create test vectors and simulate the
model with these test vectors, the engineer can begin to
verify that the system is responding as desired. This
desired response is referred to as the acceptance
criteria. Unless a design requirement changes, the
paired test vector and acceptance criteria should remain
constant throughout the design process. At this point,
this test case and acceptance criteria will be reused
throughout the design process to ensure that no
downstream design changes result in failure to meet the
requirement.

Essentially those previously mentioned place holders in
the Signal Builder block are populated with acceptance
criteria – the signals that capture the desired response
of the system for a specific set of input test vectors. In
this example, the system response is captured by
logging when certain states in the CD player state
machine become active. When a specific state becomes
active, a Boolean TRUE is stored and when the state is
inactive, a Boolean FALSE is stored creating a pulse
signal. Each state that is monitored is represented by a
pulse signal and the entire set of pulse signals
characterizes the response of the system to a given
input.

Figure 11: System output logging.

Figure 11 displays the output signal data logging block
to capture the response of the system. The Simulink “To
Workspace” block is used to store the logged states as
vectors in the MATLAB base workspace.

Since the output signals are logged to the MATLAB
workspace, similar to exporting the input vectors, using
the MATLAB programming language and the Simulink
Signal Builder API, the output signals can be post

processed and exported to the Signal Builder forming
one complete test case. Figure 12 displays the set of
input and output vectors forming the complete test case
stored in the Simulink Signal Builder block.

Figure 12: Recorded input and output test vectors.

The same test case can be run on the system model
using the previously captured system outputs as a
reference for comparison or acceptance criteria in the
later tests. In this example, the sequence and duration
that the states are active should not change so the
“Verification Library”, shown in Figure 11, performs a
comparison of the current system response to the
response stored in the test case.

Other methods for system verification can be performed
since elaborate verification methods can be created
using other Simulink blocks such as the additional
model verification blocks or the base Simulink blocks.
For this example, a simple logical comparison of the
signals is performed at each time step. The test was
created using logical comparisons and Simulink
assertion blocks as diagrammed in the “Verification
Library” shown in

Figure 13. If the logical comparison blocks produce a
false output at any time during the simulation, the
Simulink assertion blocks have been set up to detect
this false signal, halt the simulation, and display the time
step the test failed.

Figure 13: Verification subsystem.

There are a number of assertion blocks that are located
in the diagram. The need to check for assertions on only
a subset of the output signals is highly probable. A
verification manager, which will be discussed later on,
allows the user to specify what verification blocks are
active for a given test case.

A thorough set of test vectors provides the ability to
identify changes in the system response and quickly flag
when a change in the model results with a requirement
that is no longer being met. This discussion leads to the
topic of requirements-based testing.

We described earlier that paper requirements
specifications typically specify how a system should
respond based on a set of inputs to the HMI. These
paper requirements form the basis for how the entire
system is designed and tested. Developing test cases
from the requirements and traceability to the
requirements document is a powerful capability as the
design matures.

Given that a representative HMI can be created, it is
natural to go through the requirements specification and
start developing test cases at the model level following
the procedure detailed in this paper. A common CD
player requirement is the following:

Depressing the CD button when a readable disc is
present in the CD mechanism, the system shall enter
the ‘Play’ State.

Based on this requirement, a test case can be created
using the HMI to create the input vectors, and the
response of the system can be analyzed. If the system
responds as desired, the system response will be added
to the test case and saved for later reuse in the Signal
Builder block. Figure 14 displays the test case created to
test the CD button requirement.

Figure 14: Test case based on a requirement.

In HMI-dependent systems, the number of tests required
to fully cover the model can be quite large.
Requirements traceability provides a method to specify
which requirements are being tested for a given test
case; if a test does fail, the requirements that are no
longer met are immediately evident.

Using Simulink Verification and Validation [8], the
documented requirements can be linked within the
Signal Builder block to a specific test case or a group of
test cases. Selecting the Simulink Verification and
Validation icon in the Signal Builder interface opens the
verification and requirements managers. The
verification manager allows the user to specify what
verification blocks are active for a given test case. The
requirements manager allows the user to specify what
requirements are linked to the given test case.

Figure 15 displays the Signal Builder interface with the
verification and requirements managers displayed. If
you look closely to the requirements on the right hand
side, the link to the CD button requirement is present.
When that link is selected, the requirements document
is automatically opened and the linked requirement is
displayed.

Figure 15: Signal Builder with the verification and
requirements managers.

The Signal Builder block incorporates the capabilities to
manage the test signals, verifications, and requirements
under one interface. Using the verification and
requirements managers allows an engineer to create
effective test cases for easy reuse as the model is
elaborated. The HMI provides an efficient means to
populate the signals in the signal builder block, and the
requirements can be easily added to complete the test
case providing traceability back to the requirements
document.

CONCLUSION

The prevalence of electronic devices with complex
Human Machine Interfaces is growing every year. The
need to provide early verification and validation of the
algorithms and the interfaces is a challenge for
engineers who traditionally wait for hardware to begin
testing. In this paper, we have presented a process by
which engineers can create a graphical representation of
the interface, recorder their tests, and use them with
models of the algorithm to verify the design.

REFERENCES

1. www.mathworks.com/applications/controldesign/des
cription

2. The MathWorks Inc., “Using MATLAB,” Version 7.3,
The MathWorks Inc., Natick, MA, September, 2006.

3. The MathWorks Inc., “Using Simulink,” Version 6.5,
The MathWorks Inc., Natick, MA, September, 2006.

4. Thomas Sedran, Thomas Wendt, and Antonio
Benecchi, “Electronics & Automotive: Achieving a
more solid Union,” Automotive Design & Production,
May 2005.

5. The MathWorks Inc., “Stateflow User’s Guide,"
Version 6.5, The MathWorks Inc., Natick, MA,
September, 2006.

6. The MathWorks Inc., “Creating Graphical User
Interfaces,” Version 7.3, The MathWorks Inc.,
Natick, MA, September, 2006.

7. The MathWorks Inc., “Using Simulink,” Version 6.5
8. The MathWorks, Inc., “Simulink Verification and

Validation User’s Guide,” Version 2,
The MathWorks, Inc., Natick, MA, September 2006.

CONTACT

Chris Fillyaw
Sr. Applications Engineer
(248)596-7925, Chris.Fillyaw@mathworks.com.
Chris has been involved in developing automotive
systems for over seven years and has been leveraging
the capabilities of The MathWorks tools throughout his
career. Chris is based out of the Detroit, Michigan office
where he focuses on working with automotive customers
who are interested in adopting Model-Based Design.
Chris graduated from Michigan Technological University
with Bachelors in Electrical Engineering and received
his Masters in Electrical Engineering from The
University of Michigan – Dearborn.

Jonathan Friedman
Automotive Industry Marketing Manager
(508) 647-7752, Jon.Friedman@mathworks.com.
Jon leads the marketing effort to foster industry adoption
of The MathWorks tools and Model-Based Design.
Before joining The MathWorks, Jon held various
positions at Ford Motor Company that included working
on software development research at the Ford Research
Lab, working in Product Development as a Vehicle
Launch Leader at plants across North America, and as
an Electrical Engineering Supervisor. Jon has also
worked as an Independent Consultant on projects for
Delphi, General Motors, Chrysler and the US Tank-
automotive and Armaments Command. Jon holds a
B.S.E., M.S.E. and Ph.D. in Aerospace Engineering as
well as a Masters in Business Administration, all from
the University of Michigan.

Sameer M. Prabhu
Sr. Applications Engineering Team Lead
(248) 596-7944, Sameer.Prabhu@mathworks.com.
Sameer has over ten years of experience applying
The MathWorks products in various application areas.
As a Senior Team Lead in the Detroit, MI office, Sameer
manages a team of applications engineers focused on
working with customers in the automotive and
commercial vehicle industry to address the systems
integration challenges posed by increased adoption of
electronics in these industries. Sameer graduated from
University of Bombay with Bachelors in Mechanical
Engineering and received his Ph.D. in Mechanical
Engineering from Duke University in the area of robotic
controls and artificial intelligence. He also holds an MBA
from The University of Michigan.

*The MathWorks, Inc. retains all copyrights in the figures and excerpts of code
provided in this article. These figures and excerpts of code are used with
permission from The MathWorks, Inc. All rights reserved.

©1994-2007 by The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and
xPC TargetBox are registered trademarks and SimBiology, SimEvents, and
SimHydraulics are trademarks of The MathWorks, Inc. Other product or brand
names are trademarks or registered trademarks of their respective holders.

