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ABSTRACT 

Many of the multimedia and convenience features in 
today’s passenger vehicles involve Human Machine 
Interfaces (HMIs), such as the radio face plate or the 
remote key fob. The functional requirements for these 
systems are often written in terms of the customer 
interaction with the interface device. In the past, design 
engineers would not begin to test requirements for these 
systems until prototype hardware was available. 
However, many product development organizations are 
shifting from this hardware-based traditional 
development cycle, which relies on designing via a 
prototype and test iteration, to Model-Based Design. 
Unfortunately, testing systems with complex human 
machine interface requirements becomes less intuitive 
when the prototypes are removed from the design 
process, because the test cases must be scripted into 
the modeling environment instead of being applied 
directly to a prototype of the interface device. In this 
paper we will show how engineers can create a “soft” 
representation of an automotive HMI and record the test 
procedure when specified as a series of interactions with 
the interface, such as button presses. Next, we will 
demonstrate how the test procedure can be captured 
and exported to an editable file for re-use with Model-
Based Design. Lastly, we will show how a test file can 
be used to populate a test harness within the Simulink® 
software environment.   

INTRODUCTION 

The need to bring innovative, high-quality automobiles 
to market faster and at the same time comply with 
stringent regulatory requirements is driving the 
increased use of models during the design and 
realization process. The ability to model and simulate 
various automotive systems prior to building hardware 
enhances the product development process by allowing 
manufacturers to test whether the system meets 
requirements using virtual rather than physical 
prototypes. By using such virtual prototypes, in the form 
of models, designers can explore multiple design 
alternatives to optimize the design and discover errors 
in the system early on. Thus, Model-Based Design 

provides efficiencies in product development that enable 
companies to deliver products on time, to remain within 
budget, and to fulfill initial requirements.[1] The latest 
Model-Based Design tools can also generate prototype 
and production code from a model automatically, 
significantly decreasing development time. As a result, 
Model-Based Design is an integral part of the 
automotive systems development process.  

In this paper we explore the application of Model-Based 
Design for the development of multimedia and 
convenience features in today’s passenger vehicles. 
The MATLAB® and Simulink® software environments 
are used throughout the design process for developing 
and testing these systems, because they provide high-
level formalisms that allow the modeling of such 
systems and also allows automatic generation of code to 
test and implement these systems. [2] [3]  

In this paper we discuss in detail the application of these 
tools to the development of a specification of a radio 
face plate as an example of typical multimedia system 
in a car. We also illustrate the testing of the system to 
ensure that the design meets requirements and to 
identify inconsistent requirements. The paper is 
organized as follows: Section 2 describes in detail the 
problem framework that is used throughout this paper, 
and discusses Model-Based Design concepts and how 
they can be applied to the same problem. To conduct a 
detailed and realistic testing of the radio face plate 
specification it is necessary to build a Human Machine 
Interface (HMI) to the specification. Section 3 focuses 
on the issues involved with building such a HMI. Section 
4 then deals with using this HMI to test the specification 
and also discuses creating test sequences based on the 
HMI interactions, which can then be reused not only for 
testing the specification but also the final 
implementation. The conclusions are drawn in Section 
5.  



ROLE OF EXECUTABLE SPECIFICATIONS IN 
THE DEVELOPMENT OF MULTIMEDIA AND 
CONVENIENCE FEATURES 

It is estimated that electronics and software content will 
make up 40% of a vehicle’s cost by 2010.[4] In the early 
days, electronics were used primarily to ensure that 
vehicles met stringent emissions and fuel economy 
requirements by replacing conventional mechanical 
systems with electronic systems. Currently, in addition 
to the focus on emissions and fuel economy, automotive 
manufacturers use electronics to introduce advanced 
multimedia and convenience features to attract 
technology-savvy buyers. These features focus on 
assisting the driver through technologies such as hands-
free phone operation, using the car’s radio and 
Bluetooth networking, and also with providing relevant 
information to the driver such as upcoming traffic 
information and the need to change the planned route to 
the destination. In addition to assisting the driver, these 
systems also entertain passengers through on-board 
systems such as satellite radio, DVD players, and so on, 
which can be accessed through a common interface. 
Automotive manufacturers see such systems as a key 
source for differentiating themselves from the 
competition, and also as a lucrative revenue stream. As 
such there is an increased emphasis on developing and 
deploying these systems to meet consumers’ varying 
requirements, while being simple enough to operate and 
use, and of high enough quality to avoid the need for 
costly recalls and software fixes.  

ISSUES IN MULTIMEDIA AND CONVENIENCE 
FEATURES DEVELOPMENT 

A key aspect of the multimedia and convenience 
features is that they have to be easy to use. Thus a 
significant amount of time and effort is devoted to 
designing the HMIs for these systems in addition to 
designing the underlying electronics. An example of 
such a system is the radio face plate or the remote key 
fob commonly found in automobiles today. The starting 
point for the design of these systems is usually their 
functional requirements, which are often written in terms 
of the customer interaction with the interface device. For 
example, it is common to have requirements for the 
radio face plate such as: 

Requirement 1: When any radio preset button is 
depressed for less than three seconds, the radio shall 
tune the radio receiver to the station value stored in the 
radio preset. 

Requirement 2: When any radio preset button is 
depressed for three seconds or more, the value of the 
preset shall be set to the current station to which the 
radio receiver is tuned. 

A typical development process takes these requirements 
and proceeds through the system design and 
implementation stages to test the system to determine if 

it meets the requirements or not. If it does not meet the 
requirements, an expensive and time consuming 
debugging process follows to determine if the 
implementation is faulty or if one or more requirements 
are inconsistent with each other. In either case, because 
functional and performance testing does not begin until 
prototype hardware is available, there is a significant 
time lag to turn around design changes to meet 
requirements changes or fix design errors. To address 
these issues, many product development organizations 
are shifting from this hardware-based traditional 
development cycle, which relies on designing with a 
prototype and test iteration, to Model-Based Design.  

INTRODUCTION TO MODEL-BASED DESIGN 

Model-Based Design lets development organizations 
address the challenges of increasing product 
complexity, more stringent performance requirements, 
and shorter product development cycles. By using 
models in the early design stages, engineers can create 
what are known as "executable specifications" that 
enable them to immediately validate and verify 
specifications against the requirements. Validation 
ensures that the requirements are correct and that they 
represent the intended behavior. Verification ensures 
that the outputs of each step satisfy the step’s inputs 
(i.e., the system satisfies its requirements). Thus, 
Model-Based Design allows engineers to detect errors 
earlier in the development process when the cost to fix 
them is less expensive. Further down the design 
process, models can be used to communicate between 
engineering teams with different specializations, 
allowing them to work together and to communicate 
between stages in the overall process. Moreover, initial 
design models can be incrementally extended to include 
increasing implementation detail. Thus, Model-Based 
Design allows engineers to explore different design 
alternatives early in the design process using the 
models which are part of the executable specification.  
After the concept phase is completed, the same 
executable specification (containing the model) is used 
by the next team which may need to include detailed 
implementation effects into the model. This process 
continues with each part of the design team elaborating 
the same model used by the previous team and testing 
their contribution to the design.  In contrast, a document-
centered approach requires each design stage to 
generate new artifacts or design documents to 
communicate the state of the design as it passes from 
one stage to the next. 

In addition to elaborating the model at each design step 
to minimize the non-value added work and possible 
introduction of errors, many companies are using the 
models for multiple purposes.  For example, the same 
models used to communicate the design for software or 
hardware design can be used for hardware-in-the-loop 
testing.  , Moreover, these activities can be automated 
so as to prevent introduction of errors that can occur 
during manual implementation and realization tasks, 
and further shortens the path to product delivery by 



generating code for testing, calibration, and the final 
production. An important benefit of Model-Based Design 
is the traceability of design decisions all the way down to 
the implementation, so test results can be directly 
interpreted as high-level design decisions. Finally, even 
though electronic models are easier to navigate than 
paper documents, the formal system design process still 
requires detailed documentation. Advanced tools allow 
automatic generation of this documentation from a 
model, while Model-Based Design forces the design 
process as well as the final product to be documented 
for maintenance and future developments. The next 
section discusses how Model-Based Design can be used 
for developing a radio face plate system.  

 

MODEL-BASED DESIGN FOR RADIO FACE PLATE 
DEVELOPMENT 

MATLAB and Simulink are used throughout the design 
process because they provide high-level formalisms 
such as Stateflow® [5] to support detailed modeling of 
both the radio face plate specification and the testing 
infrastructure required to test the face plate. A radio face 
plate is typically designed to meet requirements, some 
of which are mentioned below: 

Power is turned on: When the battery is powered (key in 
accessory mode or key on), the audio unit goes into the 
'PowerOn' mode. The system enters the 'Standby' state.  

System is turned on: When the user turns the system 
on, the system moves into the 'On' state. 

These requirements are typically captured in paper 
form. Traditionally, to verify if the embedded controller 
drives the system into the standby state when the 
ignition state is key-on, we need to wait for prototype 
hardware. Within Model-Based Design, , we can specify 
these requirements using Stateflow, which not only 
provides us a visual interpretation of the system 
functionality but also allows us to test the functionality 
virtually. Stateflow is used to elegantly model the 
discrete event algorithm by exploiting the hierarchical 
state behavior of Stateflow (for example, the Power On 
state has two sub-states, viz., Standby and On; also On 
itself may have sub-states), as shown in Figure 1.  

 

Figure 1:  Stateflow® representation of radio face plate 
logic. 
 
The Stateflow model then becomes the heart of the 
executable specification of the system. Since this 
specification is executable, unlike traditional paper 
specifications, the behavior of the system can be 
verified by simulating the model Simulation is achieved 
by submitting the model to a variety of inputs that 
correspond to user commands, to verify that the 
requirements are correctly captured in the Stateflow 
diagram. Inputs can be created using the Signal Builder 
functionality in Simulink, as shown in Figure 2. The 
animation capability of Stateflow provides visual 
feedback regarding the correct functionality of the 
algorithm. 

 

Figure 2: Test case representing user commands. 
 

THE NEED FOR A HUMAN MACHINE 
INTERFACE (HMI) IN AN EXECUTABLE 
SPECIFICATION 

Executable specifications often specify the desired 
behavior of a system to external inputs, as described 
above. For example, in a “throttle by wire system,” the 
driver’s input to the algorithm is via the throttle pedal. 
The executable specification then specifies the desired 



response of the system to this input. In this case, there 
is only a single user input to the system. In general, 
these types of systems with a small number of human 
inputs can be captured using a time-based trace, or 
modeled using common constructs such as steps and 
ramps. However, there is a class of systems in 
automotive engineering that can have multiple inputs or 
a series of multiple inputs from the driver or passengers 
over time. In these cases, it is neither practical to try to 
model the inputs, nor to modify the hardware to create a 
trace of the user inputs. Instead, it makes sense to 
create a graphical representation of the HMI hardware to 
be included with the executable specification. Through 
the inclusion of the HMI, engineers can interact with the 
specified algorithm using the same form of input as the 
end user.  

For example, many of the multimedia systems in today’s 
passenger vehicles involve sophisticated HMIs that 
require a series of inputs from the user to achieve their 
desired result, e.g., programming the radio frequency 
preset buttons or using a navigation system. The 
functional requirements for these systems are often 
written in terms of the customer interaction with the 
interface device. For example, it is common to have 
requirements such as: 

1. When any radio preset button is depressed for less 
than 3 seconds, the radio will tune the radio receiver 
to the station value stored in the radio preset. 

 
2. When any radio preset button is depressed for 3 

seconds or more, the value of the preset will be set 
to the current station to which the radio receiver is 
tuned. 

 
Traditionally, such requirements are tested using 
prototype hardware. However, since executable 
specifications allow for testing prior to hardware 
availability, engineers now must develop test scripts to 
exercise the algorithm. Unfortunately, since there are 
hundreds of these series of HMI inputs required to fully 
test a typical radio, modeling the inputs as a time-based 
test vector can be time consuming and monotonous. To 
address this issue, engineers add graphical or “soft” 
representations of the proposed HMI to the executable 
specification to allow design and test engineers to 
interact with the algorithm.  

The steps of the test procedure can then be recorded 
and edited (if necessary) to be used later to automate 
the testing process for future design iterations within 
Model-Based Design.  

USING HMI’S TO CREATE TEST VECTORS 

To demonstrate the capability of using an HMI to create 
test vectors, an automotive radio system will be used 
throughout this example. The radio is controlled through 
a face plate HMI containing a number of buttons and a 
display. This example focuses on developing the “soft” 

HMI representation and using it to create test vectors 
examining the following topics: 

1. Develop the “Soft” HMI representation. 

2. Capture the user inputs to the HMI and populate a 
Signal Builder block with the test vector. 

3. Exercise the model with the test vectors, capture the 
system response, and populate the Signal Builder 
block to form one test case with acceptance criteria. 

4. Create test vectors based on requirements 
specifications. 

Figure 3 displays the “soft” HMI representation that will 
be constructed in this example providing the capability 
to create test vectors. 

 

Figure 3: Radio face plate HMI. 
 
The CD player system model shown in Figure 4 is the 
model under test. On the far left, the “TestHarness” 
subsystem contains a Simulink Signal Builder block and 
on the right, the “Verification” subsystem contains the 
verification blocks. The role of the Signal Builder and 
verification blocks should be evident after following the 
example presented in this paper. Throughout this 
example, the contents of the Signal Builder block will be 
generated from the button presses on the HMI and 
through exercising the model to capture acceptance 
criteria.  

 

Figure 4: CD player system model. 
 
The MATLAB Graphical User Interface Development 
Environment (GUIDE) provides a set of tools for 



creating HMIs. These tools provide an environment to 
layout and program HMIs. 

GUIDE provides users with a palette to drag and drop 
various input and display elements, such as buttons, 
text boxes, and gauges. GUIDE ships with a set of 
commonly used input and display components, but for 
advanced applications, GUIDE can incorporate images 
into the HMI and can be extended through the use of the 
Microsoft ActiveX support when running MATLAB in the 
Microsoft Windows environment. The ActiveX extension 
allows users to create or purchase custom input or 
display components. All the components used to 
develop the radio face plate in this demonstration are 
shipped with GUIDE, excluding the graphics. 

For the radio face plate HMI, a bitmap image of the 
physical face plate is used to provide the look and feel 
of the physical face plate, as well as to create a 
template as to where buttons and displays need to be 
placed. Figure 3 displays the bitmap that represents the 
physical face plate. 

For each button that needs to be a testable input to the 
system, push buttons from the GUIDE palette are 
placed over top of the button represented in the image. 
In this case, the ON/OFF button is a desired input and a 
push button is sized and positioned appropriately to 
exactly cover the button represented in the physical face 
plate image, as shown in Figure 5. 

 

Figure 5: GUIDE push button. 
 
The size and position of the buttons and displays 
are dynamic and can be altered by a manual drag 
and drop or via a MATLAB script for programmatic 
sizing and positioning. When the GUIDE HMI is 
published, the pushbutton will sit on top of the 
background image as shown in  
Figure 6. 
 

 
 
Figure 6: Pushbutton on physical face plate. 

 
To keep the original look of the physical HMI, the button 
can be skinned with an image as well. For each button 
that is desired as an input to the system, the section of 
the image that represents the button is cut and saved in 
an image file for later use as a skin for the pushbutton in 
GUIDE. Figure 7 displays the published GUIDE HMI 
with the skinned ON/OFF image. 

 

Figure 7:  Face plate with skinned ON/OFF button.  

The ON/OFF button is now an active button and when 
pressed by the user, an animation representing the 
button being pushed down can be noticed. The same 
procedure can be reused for each button that is desired 
to represent an input to the system. 

Here is the complete set of inputs chosen to be active 
buttons in this example: 

� ON/OFF 
� CD 
� Eject 
� REW 
� FWD 
� CD Slot 
� Battery Connect  
� Record button and LED (Used to trigger 

capturing the button presses) 
 
Figure 8 displays the completed GUIDE layout for the 
radio face plate that includes all of the buttons 
positioned and sized based on the set of desired system 
inputs. Figure 9 displays the published radio face plate 
HMI and the finished product that the user will interact 
with to create test cases to exercise the model. 

 

Figure 8:  GUIDE face plate example. 



 

Figure 9:  Published radio face plate HMI.  

When the HMI is published, GUIDE automatically 
creates a MATLAB script template that contains callback 
functions for each active button. Each time a button is 
pressed, the callback function is called processing the 
content of the function. The content of the callback 
function is specified through MATLAB programming 
providing the capability to perform actions as simple as 
toggling a value or an even more sophisticated action 
such as activating a mechanism to capture the user 
inputs. 

As previously mentioned, the overall goal is to be able 
to create test vectors through interaction with the 
representative HMI. Essentially, as the user interacts 
with the HMI, this interaction needs to be captured so 
the test vectors can be applied to the model for 
continuous reuse as the model evolves. The MATLAB 
code shown below demonstrates how to create a time 
series vector for each button. 

% --- Executes on button press in 
power_pushbutton. 
function 
power_pushbutton_Callback(hObject, … 
  eventdata, handles) 
 
   

handles.states.power_request(handles.
index.power) =…   
~handles.states.power_previous; 

    handles.states.power_previous =… 
handles.states.power_request(handles.
index.power); 

    
handles.timers.power(handles.index.power) 
= toc; 
    handles.index.power = 
handles.index.power + 1;  
 
In this example, we have chosen seven buttons from the 
radio face plate that are desired inputs to the system so 
the end result will be seven time series vectors that can 
be saved for later reuse. 

On the upper right hand corner of the HMI, a “Record” 
button is present with an LED indicator. When the user 
decides that they would like to create a test vector, the 
“Record” button is pressed lighting the LED to start the 
recording process. Pressing the record button merely 
starts a timer at t=0 and the then system waits for inputs 
from the user. 

Focusing on the ON/OFF button case, the MATLAB 
code previously shown represents the callback function 
to capture the change of the ON/OFF button value and 
time stamp when the change occurred creating the time 
series vector. MATLAB contains a capability to generate 
time stamps through the use of the tic and toc 
commands. Pressing the record button calls the tic 
command and each button press calls the toc to obtain a 
time stamp. Since each button on the HMI is a toggle 
button, the same code snippet can be reused with 
minimal changes for each active button.  

Once the desired sequence of button presses has been 
completed, simply pressing the record button again will 
stop the recording process and export each of the seven 
time series vectors to the Simulink Signal Builder block. 
The Simulink Signal Builder block contains an API that 
can be accessed through MATLAB to completely 
automate exporting the time series vectors to the Signal 
Builder block. Each time a test case is captured using 
this code, the newest time series is automatically 
appended to the existing time series in the Signal 
Builder block.  This automatic appending, allows a suite 
of test vectors to be created. 

Figure 10 shows the Simulink Signal Builder block 
populated with the user inputs.  Also note that there are 
place holders for the test results, or acceptance criteria, 
once the model has been exercised with the input 
signals. Creating the acceptance criteria for each of the 
tests will be discussed later. 

 

Figure 10: Recorded input test vectors. 
 
Once the Signal Builder block has been populated with 
the input signals, the system model can be simulated 
while exercising the system with the inputs that were 
captured from the HMI. The suite of test vectors can be 
continuously reused to evaluate the system as the 
engineer uses the model to iterate through design 
alternatives. If a design change results in an alteration 
to a test vector, the engineer could either graphically 
edit the signals in the Signal Builder block through the 
Signal Builder interface, or could use the HMI and 



generate another test case and add it to the test suite, 
as described in the previous section. 

With the ability to create test vectors and simulate the 
model with these test vectors, the engineer can begin to 
verify that the system is responding as desired. This 
desired response is referred to as the acceptance 
criteria.  Unless a design requirement changes, the 
paired test vector and acceptance criteria should remain 
constant throughout the design process. At this point, 
this test case and acceptance criteria will be reused 
throughout the design process to ensure that no 
downstream design changes result in failure to meet the 
requirement. 

Essentially those previously mentioned place holders in 
the Signal Builder block are populated with acceptance 
criteria – the signals that capture the desired response 
of the system for a specific set of input test vectors. In 
this example, the system response is captured by 
logging when certain states in the CD player state 
machine become active. When a specific state becomes 
active, a Boolean TRUE is stored and when the state is 
inactive, a Boolean FALSE is stored creating a pulse 
signal. Each state that is monitored is represented by a 
pulse signal and the entire set of pulse signals 
characterizes the response of the system to a given 
input. 

 

Figure 11: System output logging. 
 

Figure 11 displays the output signal data logging block 
to capture the response of the system. The Simulink “To 
Workspace” block is used to store the logged states as 
vectors in the MATLAB base workspace. 

Since the output signals are logged to the MATLAB 
workspace, similar to exporting the input vectors, using 
the MATLAB programming language and the Simulink 
Signal Builder API, the output signals can be post 

processed and exported to the Signal Builder forming 
one complete test case. Figure 12 displays the set of 
input and output vectors forming the complete test case 
stored in the Simulink Signal Builder block. 

 

Figure 12:  Recorded input and output test vectors. 

The same test case can be run on the system model 
using the previously captured system outputs as a 
reference for comparison or acceptance criteria in the 
later tests. In this example, the sequence and duration 
that the states are active should not change so the 
“Verification Library”, shown in Figure 11, performs a 
comparison of the current system response to the 
response stored in the test case. 

Other methods for system verification can be performed 
since elaborate verification methods can be created 
using other Simulink blocks such as the additional 
model verification blocks or the base Simulink blocks. 
For this example, a simple logical comparison of the 
signals is performed at each time step. The test was 
created using logical comparisons and Simulink 
assertion blocks as diagrammed in the “Verification 
Library” shown in  

Figure 13. If the logical comparison blocks produce a 
false output at any time during the simulation, the 
Simulink assertion blocks have been set up to detect 
this false signal, halt the simulation, and display the time 
step the test failed.  



 
 
Figure 13: Verification subsystem. 
 
There are a number of assertion blocks that are located 
in the diagram. The need to check for assertions on only 
a subset of the output signals is highly probable. A 
verification manager, which will be discussed later on, 
allows the user to specify what verification blocks are 
active for a given test case. 

A thorough set of test vectors provides the ability to 
identify changes in the system response and quickly flag 
when a change in the model results with a requirement 
that is no longer being met. This discussion leads to the 
topic of requirements-based testing. 

We described earlier that paper requirements 
specifications typically specify how a system should 
respond based on a set of inputs to the HMI. These 
paper requirements form the basis for how the entire 
system is designed and tested. Developing test cases 
from the requirements and traceability to the 
requirements document is a powerful capability as the 
design matures. 

Given that a representative HMI can be created, it is 
natural to go through the requirements specification and 
start developing test cases at the model level following 
the procedure detailed in this paper. A common CD 
player requirement is the following: 

Depressing the CD button when a readable disc is 
present in the CD mechanism, the system shall enter 
the ‘Play’ State. 

Based on this requirement, a test case can be created 
using the HMI to create the input vectors, and the 
response of the system can be analyzed. If the system 
responds as desired, the system response will be added 
to the test case and saved for later reuse in the Signal 
Builder block. Figure 14 displays the test case created to 
test the CD button requirement. 

 

Figure 14: Test case based on a requirement. 
 
In HMI-dependent systems, the number of tests required 
to fully cover the model can be quite large. 
Requirements traceability provides a method to specify 
which requirements are being tested for a given test 
case; if a test does fail, the requirements that are no 
longer met are immediately evident. 

Using Simulink Verification and Validation [8], the 
documented requirements can be linked within the 
Signal Builder block to a specific test case or a group of 
test cases. Selecting the Simulink Verification and 
Validation icon in the Signal Builder interface opens the 
verification and requirements managers. The 
verification manager allows the user to specify what 
verification blocks are active for a given test case. The 
requirements manager allows the user to specify what 
requirements are linked to the given test case.  

 
Figure 15 displays the Signal Builder interface with the 
verification and requirements managers displayed. If 
you look closely to the requirements on the right hand 
side, the link to the CD button requirement is present. 
When that link is selected, the requirements document 
is automatically opened and the linked requirement is 
displayed. 

 
 
 



Figure 15: Signal Builder with the verification and 
requirements managers. 
 
The Signal Builder block incorporates the capabilities to 
manage the test signals, verifications, and requirements 
under one interface. Using the verification and 
requirements managers allows an engineer to create 
effective test cases for easy reuse as the model is 
elaborated. The HMI provides an efficient means to 
populate the signals in the signal builder block, and the 
requirements can be easily added to complete the test 
case providing traceability back to the requirements 
document. 

CONCLUSION 

The prevalence of electronic devices with complex 
Human Machine Interfaces is growing every year. The 
need to provide early verification and validation of the 
algorithms and the interfaces is a challenge for 
engineers who traditionally wait for hardware to begin 
testing. In this paper, we have presented a process by 
which engineers can create a graphical representation of 
the interface, recorder their tests, and use them with 
models of the algorithm to verify the design. 
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