This is machine translation

Translated by Microsoft
Mouse over text to see original. Click the button below to return to the English verison of the page.


Construct normalized least mean square (LMS) adaptive algorithm object


alg = normlms(stepsize)
alg = normlms(stepsize,bias)


The normlms function creates an adaptive algorithm object that you can use with the lineareq function or dfe function to create an equalizer object. You can then use the equalizer object with the equalize function to equalize a signal. To learn more about the process for equalizing a signal, see Adaptive Algorithms.

alg = normlms(stepsize) constructs an adaptive algorithm object based on the normalized least mean square (LMS) algorithm with a step size of stepsize and a bias parameter of zero.

alg = normlms(stepsize,bias) sets the bias parameter of the normalized LMS algorithm. bias must be between 0 and 1. The algorithm uses the bias parameter to overcome difficulties when the algorithm's input signal is small.


The table below describes the properties of the normalized LMS adaptive algorithm object. To learn how to view or change the values of an adaptive algorithm object, see Access Properties of an Adaptive Algorithm.

AlgTypeFixed value, 'Normalized LMS'
StepSizeLMS step size parameter, a nonnegative real number
LeakageFactorLMS leakage factor, a real number between 0 and 1. A value of 1 corresponds to a conventional weight update algorithm, while a value of 0 corresponds to a memoryless update algorithm.
BiasNormalized LMS bias parameter, a nonnegative real number


For an example that uses this function, see Delays from Equalization.

More About

collapse all


Referring to the schematics presented in Equalizer Structure, define w as the vector of all weights wi and define u as the vector of all inputs ui. Based on the current set of weights, w, this adaptive algorithm creates the new set of weights given by


where the * operator denotes the complex conjugate and H denotes the Hermitian transpose.


[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England, John Wiley & Sons, 1998.

See Also

| | | | | | |

Introduced before R2006a

Was this topic helpful?