# abs

Absolute value and complex magnitude

## Description

example

````Y = abs(X)` returns the absolute value of each element in array `X`.If `X` is complex, `abs(X)` returns the complex magnitude.```

## Examples

collapse all

### Absolute Value of Scalar

`y = abs(-5)`
```y = 5```

### Absolute Value of Vector

Create a numeric vector of real values.

`x = [1.3 -3.56 8.23 -5 -0.01]'`
```x = 1.3000 -3.5600 8.2300 -5.0000 -0.0100```

Find the absolute value of the elements of the vector.

`y = abs(x)`
```y = 1.3000 3.5600 8.2300 5.0000 0.0100```

### Magnitude of Complex Number

`y = abs(3+4i)`
```y = 5```

## Input Arguments

collapse all

### `X` — Input arrayscalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array. `X` can be a `single` array, `double` array, signed integer array, or `duration` array. The size and data type of the output array is the same as the input array.

Complex Number Support: Yes

collapse all

### Absolute Value

The absolute value (or modulus) of a real number is the corresponding nonnegative value that disregards the sign.

For a real value, `a`, the absolute value is:

• `a`, if `a` is greater than or equal to zero

• `-a`, if `a` is less than zero

`abs(-0)` returns `0`.

### Complex Magnitude

The complex magnitude (or modulus) is the length of a vector from the origin to a complex value plotted in the complex plane.

For a complex value, $|a+bi|$ is defined as $\sqrt{{a}^{2}+{b}^{2}}$.