Inertia

Mass and inertia tensor of solid mass

• Library:
• Body Elements

Description

The Inertia block adds the inertial properties of a point or distributed mass to the attached frame. The inertia type depends on the parameterization selected. A ```Point Mass``` parameterization enables you to model a concentrated mass with no rotational inertia. A `Custom` parameterization enables you to model a distributed mass with the specified moments and products of inertia. An inertia icon identifies the inertia location in the Mechanics Explorer visualization pane.

Ports

Frame

expand all

Local reference frame of the inertia element. Connect to a frame line or frame port to define the relative position and orientation of the inertia.

Parameters

expand all

Inertia parameterization to use. Select `Point Mass` to represent a mass with no rotational inertia. Select `Custom` to represent a distributed mass with rotational inertia.

Aggregate mass of the solid. The mass can be a positive or negative value. Specify a negative mass to model the aggregate effect of voids and cavities in a compound body.

[x y z] coordinates of the center of mass relative to the block reference frame. The center of mass coincides with the center of gravity in uniform gravitational fields only.

Three-element vector with the [Ixx Iyy Izz] moments of inertia specified relative to a frame with origin at the center of mass and axes parallel to the block reference frame. The moments of inertia are the diagonal elements of the inertia tensor

`$\left(\begin{array}{ccc}{I}_{xx}& & \\ & {I}_{yy}& \\ & & {I}_{zz}\end{array}\right),$`

where:

• ${I}_{xx}=\underset{V}{\int }\left({y}^{2}+{z}^{2}\right)\text{\hspace{0.17em}}dm$

• ${I}_{yy}=\underset{V}{\int }\left({x}^{2}+{z}^{2}\right)\text{\hspace{0.17em}}dm$

• ${I}_{zz}=\underset{V}{\int }\left({x}^{2}+{y}^{2}\right)\text{\hspace{0.17em}}dm$

Three-element vector with the [Iyz Izx Ixy] products of inertia specified relative to a frame with origin at the center of mass and axes parallel to the block reference frame. The products of inertia are the off-diagonal elements of the inertia tensor

`$\left(\begin{array}{ccc}& {I}_{xy}& {I}_{zx}\\ {I}_{xy}& & {I}_{yz}\\ {I}_{zx}& {I}_{yz}& \end{array}\right),$`

where:

• ${I}_{yz}=-\underset{V}{\int }yz\text{\hspace{0.17em}}dm$

• ${I}_{zx}=-\underset{V}{\int }zx\text{\hspace{0.17em}}dm$

• ${I}_{xy}=-\underset{V}{\int }xy\text{\hspace{0.17em}}dm$