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What is Prognostics?

Prognostics

From Wikipedia, the free encyclopedia

This article is about the engineering discipline. For
the medical term, see prognosis.
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conditions.l*! The science of prognostics is based

Prognostics is an engineering discipline focused on
predicting the time at which a system or a component
[T will no longer perform its intended function.[2] This

on the analysis of failure modes, detection of early
signs of wear and aging, and fault conditions. An

effective prognostics solution is implemented when

lack of performance is most often a failure beyond
which the system can no longer be used to meet

desired performance. The predicted time then
becomes thgq remaining useful life (RUL),which is

an important concept in decision making for
contingency mitigation. Prognostics predicts the future

there is sound knowledge of the failure
mechanisms that are likely to cause the

degradations leading to eventual failures in the
system. It is therefore necessary to have initial



Why Prognostics?

= Improved operating efficiency
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- New revenue streams = Competitive differentiator

Aijrcraft health monitoring systems

Live maintenance through wearables
and mobile tech manuals

Predictive maintenance

MNew repair technology
Compaosite repair capabilities
Additive manufacturing

Other

Technology Investment

Source: Oliver Wyman 2015 MRO Survey



How does it work? Prognostics Algorithm Workflow
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Challenges for Prognostics Development

- How long will it take to collect fault data?

- How expensive is It to collect?

- How complex is the system?
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Sources of Data for Prognostics Development

Experiments
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Simulation
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Spectrum of Approaches for Prognostics Algorithms

Data-Driven Modeling

>

Curve Fitting Statistical Methods

eling Dynamic
S




1.

2.

Examples

Data-based prognostics using machine learning

Fault injection and failure analysis using simulation
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1.

Examples

Data-based prognostics using machine learning
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Example 1: Data-based Prognostics with Machine Learning

LPT

Combustor NI

Nozzle

Data provided by NASA PCoE

http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
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Different Types of Learning
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Principal Components Analysis — what is it doing?

Variable 2

Variable 1

PC 1 Variable 3 Score on PC 2

Variable 2 ~——Residual

PC 2 Score on PC 1

Variable 1
PC 1
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Different Ty

Machine

Type of Learning
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Data-based Prognostics with Machine Learning - Takeaways

« Use machine learning to identify outliers and build predictive models
= Many choices for algorithms, apps make it easy to compare options

=  Workflow-focused tools help you fine-tune the model to your particular data
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2.

Examples

Fault injection and failure analysis using simulation
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Example 2:
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Fault injection and failure analysis using simulation
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Run multiple parallel simulations from the parsim command
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« Speed up simulations
and simplify workflow

« Simplifies large
simulation runs
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Leverage Parallel Computing with Simulink

Reduce the total amount of time it takes to...

Run multiple independent simulations (E.qg.
Parameter sweeps, Monte Carlo Analysis)
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Fault injection and failure analysis — Takeaways

= Use simulation when measured data is not available

- Run what-if analyses to explore scenarios that are difficult to
recreate

« Comparing field data to simulation data can help dlagnose
cause-of-failure -
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Fleet Data for Prognostics Development

Server Data Storage
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Deploying Prognostics Algorithms

Data Storage
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Vehicle Data

Server
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Considerations for System Architecture

Server

Data Storage

i1 “Infinite”
i resources on
,Il Connectivity server
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Considerations for System Architecture

Server
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Data Storage

Reasonable Compromise
» Hybrid approach — split between onboard and server-side
« Onboard: buffer, preprocess
» Server-side: classify, take action

« Recommendation: Think about modularity when designing
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Server-side Prognostics

Data Storage

Server

RESTful
Java
NET
C/C++

Package algorithms
for MATLAB
Production Server
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Onboard Prognostics

Server
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Data Storage

Generate standalone C/C++
code using Simulink Coder
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Key Takeaways

= No “one-size-fits-all” approach to prognostics.

« Prognostics system architecture is evolving.

= MATLAB and Simulink provide a platform for developing prognostics
algorithms.
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mathworks.com/big-data

L e arl l M O re ‘ MathWorks®  products ~Solutions  Academia Support Community Events

§ Trialsoftware &, Contact sales

Predictive Analytics with MATLAB

Use machine learning with big data for
engineering-driven analytics.

mathworks.com/machine-learning

Why Use MAT
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Download white paper Easy — Use familiar MATLAB functions and syntax to work with big datasets, even if they don't fit in memory. Advanced Crash Detection: The Road

z 2 - - from Deployment to Production
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e Example: Model-based approach

Engineers and data scientists work with large amounts of data in a variety of formats such as sensor, image, video,
telemetry, databases, and more. They use machine learning to find patterns in data and to build models that predict
future outcomes based on historical data. With MATLAB | you have immediate access to prebuilt functions,
extensive toolboxes, and specialized apps for classification, regression, and clustering. You can:

Compare approaches such as logistic regression, classification trees, support vector machines, ensemble
methods, and deep learning.

Use model refinement and reduction techniques to create an accurate model that best captures the predictive
power of your data. =
" 1 !

Integrate machine learning models into enterprise systems, clusters, and clouds, and target models to real-time
embedded hardware. Random Current Pulse Genarator Sinadink Funciicn
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