

Deep Learning in MATLAB:

A Brief Overview

What is can Deep Learning do for us? (An example)

Object recognition using deep learning

Training (GPU)	Millions of images from 1000 different categories
Prediction	Real-time object recognition using a webcam connected to a laptop

What is Deep Learning?

Machine Learning vs Deep Learning

Machine Learning vs Deep Learning

- **Deep learning** is a type of machine learning in which a model learns to perform tasks like classification directly from images, texts, or signals.
- Deep learning performs end-to-end learning, and is usually implemented using a neural network architecture.
- Deep learning algorithms also scale with data traditional machine learning saturates.

Why is Deep Learning So Popular Now?

Two Approaches for Deep Learning

1. Train a Deep Neural Network from Scratch

2. Fine-tune a pre-trained model (transfer learning)

Pains In Deep Learning

Expertise

```
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(3,16,'Padding',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,32,'Padding',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,64,'Padding',1)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
```

Time to Train

Data

Example: Vehicle recognition using deep transfer learning

Cars

Trucks ———

SUVs —

Big Trucks ———

Vans ———

5 Category Classifier

Import the Latest Models for Transfer Learning

Pretrained Models*

- AlexNet
- VGG-16
- VGG-19
- GoogLeNet
- Inception-v3
- ResNet50
- ResNet-101
- Inception-resnet-v2
- SqueezeNet
- MobileNet(coming soon)

Import Models from Frameworks

- Caffe Model Importer
- TensorFlow-Keras Model Importer
- Onnx Importer/ Exporter (Coming Soon)

AlexNet **PRETRAINED MODEL**

Caffe

IMPORTER

VGG-16 PRETRAINED MODEL

GoogLeNet

PRETRAINED

MODEL

TensorFlow-

ResNet-101 ResNet-50 PRETRAINED MODEL PRETRAINED MODEL

Keras IMPORTER

Inception-v3 MODELS

single line of code to access model

What is semantic segmentation?

Localization using deep learning

Original Image

ROI detection

Pixel classification

Semantic Segmentation Network

Semantic Segmentation Network

Semantic Segmentation Demo

CamVid Dataset

- 1. Segmentation and Recognition Using Structure from Motion Point Clouds, ECCV 2008
- 2. Semantic Object Classes in Video: A High-Definition Ground Truth Database, Pattern Recognition Letters

Semantic Segmentation

CamVid Dataset

- 1. Segmentation and Recognition Using Structure from Motion Point Clouds, ECCV 2008
- 2. Semantic Object Classes in Video: A High-Definition Ground Truth Database, Pattern Recognition Letters

"I love to label and preprocess my data"

~ Said no engineer, ever.

Ground truth Labeling

"How do I *label* my data?"

New App for Ground Truth Labeling

Label pixels and regions for semantic segmentation

Data

Attributes and Sublabels

Analyzing signal data using deep learning

Deep learning features overview

- Classification
- Regression
- Semantic segmentation
- Object detection
- Scalability
 - Multiple GPUs
 - Cluster or cloud
- Custom network layers
- Import models
 - Caffe
 - Keras/TensorFlow

- Data augmentation
- Hyperparameter tuning
 - Bayesian optimization
- Python MATLAB interface
- LSTM networks
 - Time series, signals, audio
- Custom labeling
 - API for ground-truth labeling automation
 - Superpixels
- Data validation
 - Training and testing

Prediction Performance: Fast with GPU Coder

Why is GPU Coder so fast?

- Analyzes and optimizes network architecture
- Invested 15 years in code generation

TensorFlow

MATLAB

MXNet

GPU Coder

Using CUDA v9 and cuDNN v7

Overview of deep learning deployment options

"How do I *deploy* my model?"

GPU Coder-Convert to NVIDIA CUDA code

Create Desktop Apps

Run Enterprise Solution

Generate C and C++ Code

Deploy / Share

- Target GPUs
- Generate C and C++ Code

GPU Coder

GPU Coder Fills a Gap in Our Deep Learning Solution

Deploying to CPUs

MATLAB products for deep learning

Required products

- Neural Network Toolbox
- Parallel Computing Toolbox
- Image Processing Toolbox
- Computer Vision System Toolbox

Recommended products

- Statistics and Machine Learning Toolbox
- MATLAB Coder
- GPU Coder R2017b
- Automated Driving System Toolbox

Deep learning features overview

R2017b

- Classification
- Regression *
- Semantic segmentation
- Object detection *
- Scalability *
 - Multiple GPUs
 - Cluster or cloud
- Custom network layers *
- Import models *
 - Caffe
 - Keras/TensorFlow

- Data augmentation *
- Hyperparameter tuning *
 - Bayesian optimization
- Python MATLAB interface *
- LSTM networks *
 - Time series, signals, audio
- Custom labeling *
 - API for ground-truth labeling automation
 - Superpixels
- Data validation *
 - Training and testing

Thank you!

Deep learning in automated driving...

Deep Learning Onramp

- Get started using deep learning methods to perform image recognition.
- Free access for everyone
- Interactive exercises and short video demonstrations
- Work on real-life image recognition problems
- Topics include:
 - Convolutional neural networks
 - Working with pre-trained networks
 - Transfer learning
 - Evaluating network performance

Convolutional Neural Networks (CNN)

