
A-L-V
Automating the Left Side of the V

Presenters, Ford Chassis Controls:

Nate Rolfes John Broderick Jeff Cotter

With Ford MBSE Tools & Methods:

Kyu Sohn Yuping Jiang Tapan Kasaragod

May 2, 2018

MODERN SOFTWARE COMPLEXITY

Modern automotive vehicles
contain between 100-150 million
lines of code across 30-80
networked ECU’s with up to 30,000
physical parts, making them one of
the most complex engineered
systems in the modern world.

Sources:
https://informationisbeautiful.net/visualizations/million-lines-of-code/
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture
http://sites.ieee.org/futuredirections/2016/01/13/guess-what-requires-150-million-lines-of-code/

100 150

SINGLE LINES OF CODE
(MILLIONS)

https://informationisbeautiful.net/visualizations/million-lines-of-code/
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/rethinking-car-software-and-electronics-architecture
http://sites.ieee.org/futuredirections/2016/01/13/guess-what-requires-150-million-lines-of-code/

THE SOURCE OF SOFTWARE ISSUES

“The IV&V Program documented 10,677 software artifact defects on 22 NASA projects in
2007…The IV&V Program analyzed the defects sorting them by severity and type of defect.”

Requirements are the leading source of software defects.
System requirements are the leading source of requirement

defects.

THE SOURCE OF SOFTWARE ISSUES

2016MY Pro Trailer Backup Assist

41% of Software issues found during development of the 2016MY F-150 Pro Trailer
Backup Assist Feature were related to the requirements, and 38% of all software issues
were system-related.

Source:
Rolfes, N., "Requirement Modeling of Pro Trailer Backup Assist™," SAE Int. J. Passeng. Cars – Electron. Electr. Syst. 10(1):2017, doi:10.4271/2017-01-0002.

REQUIREMENT MODELING

“Requirement models … capture the functional requirement in a clear and
executable manner that can be used to evaluate the interaction and
compatibility of requirements from disparate sources”

Lee/Friedman, The Mathworks, SAE 2013-01-2237

REQUIREMENT MODELING

“Requirement models … capture the functional requirement in a clear and
executable manner that can be used to evaluate the interaction and
compatibility of requirements from disparate sources”

Lee/Friedman, The Mathworks, SAE 2013-01-2237

Requirement Specification Requirement Models

REQUIREMENT MODELING

DISTRIBUTED SYSTEM MODEL

Models System Model

Virtual

System

Validation &

Verification

1010110100110

1000101010101

1000101010011

The collection of requirement models can be collected into a larger system model which
enables up-front design and testing to ensure the system behaves as intended.

Design Iterations

Test Iterations

DISTRIBUTED SYSTEM MODEL TYPES

Simulate!

Code Gen

Code

Wrapper
Code Build

for Target

Upload to

Hardware

Hex file

Power and

Connect Hardware

Model-in-the-

Loop (MIL)

Software-in-

the-Loop (SIL)

Hardware-in-

the-Loop (HIL)

Code Gen

DISTRIBUTED SYSTEM MODEL TESTING

Vehicle

Hardware
HIL

Software
SIL

VIRTUAL BOUNDARY

Model
MIL

Maximize design

& testing in the

virtual world!

MIL & SIL issues

should not be

found in real

world testing!

THE SYSTEM V

Concept Design

Architecture &
Requirement
Development

Iterative
Design

Iterative
Design

Module Code Integration
And Verification

System Integration
And Verification

Product Integration,
V&V

Product
Complete

Development Time

Requirements
Released

Implementation
To
Requirements

Software

Generated

Models (MIL)

Models (MIL)

Software (SIL)

Hardware (HIL)

& Vehicle

THE REAL WORLD SYSTEM V

Production

Single ECU HIL

Kickoff

180 140 100 80 40 0

Software
Available

Multi ECU HIL

Weeks before Production

SIL Testing

80 weeks of

Development

Time prior to

Software

availability!

MIL can be used as

the oracle to check

SIL and HIL Testing

CAN Line

CAN
Gateway

(MIL)

Vehicle Network Toolbox

Instrument Cluster
Requirement Model

(MIL)

Instrument Cluster
Hardware (HIL)

MIL TO HIL SWITCH

Instrument Cluster
Hardware (HIL)

CAN Line

CAN
Gateway

(MIL)

Vehicle Network Toolbox

Instrument Cluster
Requirement Model

(MIL)

MIL TO HIL SWITCH

DISTRIBUTED SYSTEM TESTING

DISTRIBUTED SYSTEM TESTING

DISTRIBUTED FEATURE SIMULATOR

Network
Interface Builder

Vehicle
Interface Builder

Qt HMI
Integration

NETWORK INTERFACE BUILDER

Manually creating a Simulink model from a network
architecture file can take a lot of time and effort.
Each network model is different depending on
feature, vehicle, and build configuration.

Building the model also requires the time and effort
of an engineer who is skilled in Simulink and the
Vehicle Network Toolbox in order to robustly build
and debug that the model is working correctly.

NETWORK INTERFACE BUILDER

NETWORK INTERFACE BUILDER

It takes 4 minutes to manually model a
CAN Message in Simulink…
…and would take 14 hours

to build this model by hand!

Feature Model Example
15 ECUs

13,801 Simulink Blocks
218 CAN Messages
1,397 CAN Signals

NETWORK INTERFACE BUILDER

By automating the Feature Model build process,
we open up new possibilities to improve design,

testing, and validation results.

New System models can be generated at each
Program Milestone on demand, or whenever new

DBC files are released.

Eliminates the bottleneck of needing an expert at
Simulink to generate feature models and update

them.

Eliminates errors in manual build and the tedious
updates of the model when changes to network

message or signal designs are changed.

VEHICLE INTERFACE BUILDER

Testing the network ECU model helps to identify
and resolve issues with functional logic, state
machines, and interfaces.

However, for more realistic dynamic testing of the
control systems it is helpful to connect a vehicle
model simulator which can provide realistic virtual
feedback for sensors and actuators that the
functional ECU’s control. Several “out of the box”
simulators exist on the market, such as CarSim,
CarMaker, and the Vehicle Dynamics Blockset.

Manually setting up the interface to a vehicle
model simulator is tedious and error-prone as it
can involve mapping up to hundreds of actuation
and sensing signals between the ECU controls
model and the Vehicle Model.

It also requires an engineer who has expertise in
both Simulink and the Vehicle Model tool.

Developing a way to automatically generate this
interface is a key efficiency step to eliminate time

VEHICLE INTERFACE BUILDER

CAN Interface

• Defined by vehicle program in DBC file
• Minimal updates only when DBC files updated
• Completely modeled in Simulink

Vehicle Model Interface

• ECU-dependent interfaces
• Model interfaces may change based on model fidelity
• Must accommodate different 3rd Party vehicle models

Vehicle model interface must be modular and flexible

VEHICLE INTERFACE BUILDER

• Example Specification (Subset of Brake ECU Interface)

Input/Output ECU Signal
Name

System
Signal Name

Vehicle Model
(VM) Signal Name

Unit Gain
(ECU)

Unit Gain
(VM)

VM Specific
Parameters

Output WheelSpeed_FL W_WhlFl AVY_L1 1 2π/60

Input BrakeTorqueFL Tq_BrkFL IMP_MYBK_L1 1 1

Vehicle
Model

Plant Outputs

Plant Transmit

Plant Receive
ECU Library

VM Signal Name System Signal Name ECU Signal Name

Plant Inputs

VEHICLE INTERFACE BUILDER

System to Controller conversion Controller to System conversion

Vehicle Model to System Conversion System to Vehicle Model Conversion
All Signal Routing and Gains automatically

generated from specification files

VEHICLE INTERFACE BUILDER

Input to Brakes

Output from Brakes
Vehicle Inputs/Outputs

• Most features have “Driver in the Loop”
test scenarios

• HMI simulators help improve the
quality and robustness of a feature

• The more realistic the HMI displays and
simulators can be made, the better
testing results can be achieved.

• Developing high quality HMI displays
and interactions is tedious and is not a
typical skillset of a controls or
simulation engineer.

• Integrating HMI systems such as Qt with
the Distributed Feature Simulator helps
overcome this.

QT HMI INTEGRATION

Virtual CAN

QT Logic + Graphics

Simulink Logic QT Graphics

QT HMI INTEGRATION

• Connect ECU’s to HMI Model for Vehicle Simulator Experience
• Co-simulation with Qt model over Virtual CAN or physical device (e.g. Raspberry Pi)

Embedded
DevicePhysical CAN

QT HMI INTEGRATION
QT HMI Model and Simulink
Integration

• Virtual CAN / Physical CAN
Communication

• QT C++ Reads/Writes CAN
Messages

• QT C++ Sets QML Properties

QT HMI Model

Simulink

QML

C++

CAN

QML
Properties

QT HMI INTEGRATION

• Re-use of work already
being done by HMI teams

• Enables co-simulation of
production-quality HMI
development tools with
production-quality
controls and software
development tools

• Saves controls engineer
time of having to develop
a Simulink replication of
already existing HMI
models.

A-L-V RESULTS

Feature Initial
Build
Hours

Milestone 1
Update
Hours

Milestone 2
Update
Hours

Milestone 3
Update
Hours

Milestone 4
Update
Hours

Total
Hours

Network Interface 15 10 5 5 3 38

Vehicle Interface 6 4 4 4 4 22

HMI Integration 8 2 2 2 2 16

Total 29 16 11 11 9 76

• 76 engineering hours (9 days) saved per feature model

• For a program concurrently developing 10 features, this equates to 90 days of saved engineering time!

• In addition to saving time, the automated processes eliminate modeling mistakes

• Lastly, the automated methods frees up the time of valuable simulation engineers to focus on
simulating and testing to improve our quality and robustness rather than tedious model-building
tasks.

AUTOMATING THE LEFT SIDE OF THE V

“The problem is that we are attempting to build systems that are beyond our ability to

intellectually manage.” -- Nancy Leveson (MIT), The Coming Software Apocalypse (The Atlantic, September 2017)

HIL is not a

Silver Bullet!

Test Systems

Early and Often

via Automation!

SPECIAL THANKS

THANK YOU FOR YOUR ATTENTION ☺
The presenters wish to extend a special thank you to their management and colleagues

as well as project services support from the Mathworks listed below

Ford Motor Company
Robert ter Waarbeek Nick Adams

Dr. Darrel Recker Dave Messih

Kathi Dobies

The Mathworks
Scott Furry John Boyd

