

What is a Virtual Vehicle?

Building a Virtual Vehicle

Performing desktop studies

What is a Virtual Vehicle?

Building a Virtual Vehicle

Performing desktop studies

What is a Virtual Vehicle?

- Companies are deepening virtual development
 - Increasing reliance on system-level simulation for development
 - Using physical prototypes for confirmation and final validation
 - Focus on powertrain, vehicle dynamics and ADAS / AD

- Common challenges
 - Integration of both physics and software models
 - Access to "right level" fidelity models across organization
 - Deploying models to users who aren't tool experts

MathWorks Offering for Virtual Vehicle Simulation

Engineering Tools + Application Expertise

Create Vehicle Integrate Software Author Scenarios Simulate & Analyze

Deploy Simulation

Vehicle Templates Subsystem Libraries Modeling Guidelines C/C++ Interface Reduced Order Models FMU Integration Scene & Scenarios
Open Standards
Drive Cycles

Visualization
Data Analysis
Report Generation

Cloud Integration
Datalake Integration
HIL Deployment

Value proposition:

- Proven tools for modeling of physics and software
- Reference applications for reduced time-tosimulation
- Common platform for model reuse
- Solutions for large-scale modeling and simulation
- Flexible platform for growth / new use cases

How Are Companies Building Virtual Vehicles with MathWorks?

Ford: Build Virtual Vehicle in minutes

- Different virtual vehicles are built for different use cases
- Common themes are the automation of model creation, simulation and analysis

GM: Autonomous parking development

Bosch: Autonomous truck development

What is a Virtual Vehicle?

Building a Virtual Vehicle

Performing desktop studies

Building a Virtual Vehicle with MathWorks

- Start with one of our reference applications
- Customize as needed

Learn more:

Powertrain Blockset
Vehicle Dynamics Blockset
Simscape

Virtual Vehicle Composer App

- Unified interface to quickly configure a virtual vehicle model, select test cases and review results
- Available with **Powertrain** Blockset and / or Vehicle **Dynamics Blockset**
- Includes detailed powertrain models, vehicle dynamics and closed-loop controls

Learn more:

Virtual Vehicle Composer

Virtual Vehicle Composer App

Workflow steps:

- Start new session
- 2. Select powertrain
- 3. Select data
- 4. Select scenarios
- 5. Select signals to log
- 6. Generate model
- 7. Run test suite
- 8. Review results

Model Customization

- Virtual Vehicle Composer app gets you a good starting point quickly
- Generated models are open, so you can <u>customize it</u>
 - Add new plant, controller or sensor model features
 - Create custom test scenarios
- Leverage <u>Simulink platform</u>
 - Integrate C code, S-functions, FMU, etc.
 - Perform large scale studies
 - Deploy model (HIL, cloud, etc.)

Autonomous Emergency Braking (AEB)

If driver fails to apply brakes in time, AEB system engages automatically to avoid or mitigate collision

- Driving Scenario Designer can graphically author test scenarios
- Automated Driving Toolbox includes AEB demos for different use cases

Learn more:

<u>Automated Driving Toolbox</u> **AEB** with Vehicle Variants

Customizing for AEB

- Start with EV model generated from app
- Incorporate required features from AEB demo:
 - Sensor models
 - AEB control algorithm with brake input override
 - Test scenarios / metrics
- Import data developed for AEB application
 - Vehicle parameters
 - Controller calibrations

What is a Virtual Vehicle?

Building a Virtual Vehicle

Performing desktop studies

Pedestrian

(view obstructed)

Parked vehicles

Ego vehicle

(with camera & radar)

Lateral Distance (m)

Setting Up AEB Study

- How robust / optimal is AEB controller?
 - Tests → different scenarios
 - Plant → additional payload
 - Controller → brake application time
 - → 2nd stage brake level
- Pail / fail criterion
 - Did AEB bring vehicle to stop before collision?

Simulink Test can be used to manage test

suite

Learn more:

Simulink Test

Desktop Study Results

- Desktop as a debugging platform
 - Full study requires >> 1000 runs
 - Desktop is good for small studies, but won't scale well
 - Perform reduced 16-run study before scaling to cloud

Scenario	TestResults	VehicleMass	BrakingTime	MediumBrakeLevel
{'scenario 24 AEB PedestrianTurning Farside 10kph' }	Pass	1575	0.064	4.24
				6.36
{'scenario_24_AEB_PedestrianTurning_Farside_10kph'}	Pass	1575	0.064	
{'scenario_24_AEB_PedestrianTurning_Farside_10kph' }	Pass	1575	0.096	4.24
{'scenario_24_AEB_PedestrianTurning_Farside_10kph'}	Pass	1575	0.096	6.36
{'scenario_24_AEB_PedestrianTurning_Farside_10kph'}	Pass	2175	0.064	4.24
{'scenario_24_AEB_PedestrianTurning_Farside_10kph'}	Pass	2175	0.064	6.36
{'scenario_24_AEB_PedestrianTurning_Farside_10kph'}	Pass	2175	0.096	4.24
{'scenario_24_AEB_PedestrianTurning_Farside_10kph'}	Pass	2175	0.096	6.36
{'scenario_25_AEB_PedestrianTurning_Nearside_10kph'}	Fail	1575	0.064	4.24
{'scenario_25_AEB_PedestrianTurning_Nearside_10kph'}	Fail	1575	0.064	6.36
<pre>{'scenario_25_AEB_PedestrianTurning_Nearside_10kph'}</pre>	Fail	1575	0.096	4.24
<pre>{'scenario_25_AEB_PedestrianTurning_Nearside_10kph'}</pre>	Fail	1575	0.096	6.36
{'scenario_25_AEB_PedestrianTurning_Nearside_10kph'}	Fail	2175	0.064	4.24
<pre>{'scenario_25_AEB_PedestrianTurning_Nearside_10kph'}</pre>	Fail	2175	0.064	6.36
{'scenario_25_AEB_PedestrianTurning_Nearside_10kph'}	Fail	2175	0.096	4.24
{'scenario_25_AEB_PedestrianTurning_Nearside_10kph'}	Fail	2175	0.096	6.36

Desktop study confirmed that:

- Custom EV model performed AEB test and returned desired metrics
- Script to sweep test scenario and parameters worked properly
- Sample test scenarios passed / failed as expected

What is a Virtual Vehicle?

Building a Virtual Vehicle

Performing desktop studies

Transitioning from Desktop to Cloud

- Why would you want to use the cloud?
 - Offload computational load from your working machine
 - Scale up computing power (RAM, GPU, multi-core CPU, etc.)
 - On-demand access ("elastic computing")
 - Proximity to cloud-based data repository
- It's easy to port your code from desktop to cloud-based workflows
 - No need to rewrite your algorithm
 - Supports both Windows and Linux

Learn more:

Parallel Computing Toolbox MATLAB Parallel Server

Prebuilt Cloud Configuration - Reference Architecture

Learn more:

then apply Reference Architecture

Security Group

Cloud Study Results

- Selected Reference Architecture
 - Linux VM with 128 cores
- Executed 11,200 run test suite
 - ~1.5 hours vs. ~2 days on quad core laptop
- Insights
 - Controller appears robust to payload and braking parameter changes
 - Review failed tests (3.6% of sims) in detail

Scenario	TestResults	VehicleMass	BrakingTime	MediumBrakeLevel
{'scenario_01_AEB_Bicyclist_Longitudinal_25width'}	Pass	1575	0.072	4.77
{'scenario_01_AEB_Bicyclist_Longitudinal_25width'}	Pass	1575	0.072	5.035
{'scenario_01_AEB_Bicyclist_Longitudinal_25width'}	Pass	1575	0.072	5.3
{'scenario_01_AEB_Bicyclist_Longitudinal_25width'}	Pass	1575	0.072	5.565
{'scenario_01_AEB_Bicyclist_Longitudinal_25width'}	Pass	1575	0.072	5.83

: : : : :

Key Takeaways

- New Virtual Vehicle Composer app makes it easy to build a Virtual Vehicle
- Generated models can be customized
- Studies can be performed on desktop
- Work can easily be deployed to the cloud for large-scale studies

MathWorks AUTOMOTIVE CONFERENCE 2022 Germany

Thank you

Dr. Hugo de Kock: hugodeko@mathworks.com

Dr. Jan Janse van Rensburg: jjansev@mathworks.com

