

Function Modeling and Validation at Mercedes-Benz: Success Factors, Roadmap, and Future Challenges

MAC 20th October 2022

Christian Dziobek Dr. Thomas Ringler Dr. Florian Wohlgemuth

Mercedes-Benz

Overview

Body&Comfort Domain at Mercedes-Benz

Model-based Development of distributed Body&Comfort E/E-Systems in a distributed organisation

Future Challenges and Roadmap for Virtual integration of distributed systems

Success Factors, Questions and Challenges, Conclusion

Body&Comfort Domain at Mercedes-Benz

ECU: Electronic Control Unit

Highly distributed E/E-functions integrated into a lot of different ECUs provided by various different suppliers Globally distributed workshare - internally and by tier1s

Overview

Body&Comfort Domain at Mercedes-Benz

Model-based Development of distributed Body&Comfort E/E-Systems in a distributed organisation

Future Challenges and Roadmap for Virtual integration of distributed systems

Success Factors, Questions and Challenges, Conclusion

Where we started in the 2000th with Model-Based Design

Development of individual functions

- Mainly body and comfort control-functions, were some make use of mechatronic environmental models
- => Already good support for the individual function development and automatic code generation

However: poor infrastructure & environment

- A lot of different tools with manual data transfer from one to another tool
- Different software-architectures at different ECU integrators
- Manual SW integration into different SW stacks
- Almost no reuse of SW functions between different product-lines

Long-Term Mission & Vision

Provide a distributed integrated development environment for the development of distributed body and comfort functions

Requirement

Standardized methodology & SW pattern for the overall domain including Tier1

Seamless tool-environment / toolchain

Support fast and efficient model-based function development

Facilitate fast feedback-loops by validation by simulation

Addressed Solution

Engagement in AUTOSAR Software Standard

Engagement in AUTOSAR Meta-Model, tooling, standardised exchange format as basis for the tool-chain

Engagement in enhancement of Simulink as software development environment

Virtual validation environment (MIL, SIL, PIL)

AUTOSAR Software Standard as Foundation

- Common, standardized software architecture among all ECUs
- Same application interfaces for all SWCs on a ECUs: A clearly defined application pattern based on a proven subset of the AUTOSAR standard
 - S/R an C/S Communication including transmission monitoring & E2E
 - Managers
 - Com-Management (PNCs, Channels)
 - Ecu-Management
 - BswM-Management
 - Diagnostics
 - NvRam
 - Diag.-Displayables
 - I/O-Controls
 - DTCs (Diagnostic Trouble Code)
 - Diag.-Routines
- Defined set of Event-Types & Runnables (C-functions of SWC)

² Seamless Toolchain based on AUTOSAR

- Requirements specification
- System/SW-architecture design
- Networking/System-architecture
- Modelling environment
 - AR-Import and Model frame generation
 - Application Block Library & guidelines
 - Refactoring and block diagram Layouting
 - Integrated environment for SW-component validation through simulation
 - Traceability with respect to requirements and test
 - Static model analysis
 - Generation AUTOSAR-compilation Code
 - Code-Analyse
- Seamless diagnostic data provision process
- Consistent Delivery of all Artefacts incl. C-Code
- Virtual integration tooling

³ Simulink as Software Development Environment

Enhancements

- Enhancement of the semantics of the graphical language of Simulink and Stateflow
- Modularisation
 - Referenced-Subsystem/Model
 - Libraries
- Event Functions (Power-up/Down, Reset)
- Scheduling/Events
- SimEvents
- Software Pattern & AUTOSAR-Semantic like
 - Client/Server: Simulink Functions
 - S/R: Simulink Messages
- Variants

Virtual Validation Environment

- PC based validation of a distributed system prior model/code delivery to the different ECU-integrators
- Adjustable level of abstraction and accuracy
 - Pure function using virtual function bus
 - Function including middleware & Network Communication
- => Goal: Focus on
 - System integration tests
 - Fast iteration test with short feedback loops (Build a little, Test a little approach)

Long-Term Mission & Vision ... Resume

Provide a distributed integrated development environment for the development of distributed body and comfort functions

Requirement

Standardized methodology & SW-pattern for the overall domain including Tier1

Seamless tool-environment / toolchain

Support fast and efficient model-based function development

Facilitate fast feedback-loops by validation by simulation

Addressed Solution

Engagement in AUTOSAR Software Standard

Engagement in AUTOSAR Meta-Model, tooling, standardised exchange format as basis for the tool-chain

Engagement in enhancement of Simulink as software development environment

Virtual validation environment (MIL, SIL, PIL)

Overview

Body&Comfort Domain at Mercedes-Benz

Model-based Development of distributed Body&Comfort E/E-Systems in a distributed organisation

Future Challenges and Roadmap for Virtual integration of distributed systems

Success Factors, Questions and Challenges, Conclusion

Virtual Validation Environment

Goal: validation of the model-based developed distributed system in a seamless environment

Requirements from 2006 are still valid...

Modeling and Simulation of Distributed Automotive Systems with Simulink

DaimlerChrysler

Challenges for Modeling Distributed Systems

Current State:
Modeling independent functions

Use-Case 1: Modeling function-compound located on an ECU Use-Case 2:

Modeling distributed functions (e.g. Light Control)

Functional Aspects

- Validation of interfaces and functional behavior
- > Init. and shutdown
- Validation of interrelationship of ECU-functions
- > ECU related Power-Up/-Down
- Validation of interrelationship of distributed functions
- > Global vehicle states

Temporal Aspects

- Abstracted execution models
- > Temporal interrelationship of functions and basic software
- > Temporal behavior of communication systems

- ♦ State of the art
- Additional requirements towards modeling-tools

MathWorks IAC 2006 Stuttgart May 16th 2006

Dr. Thomas Ringler

Virtual Validation Environment

State of the Art

- Model based development and validation of individual SWC → is possible within Simulink
- Model based development and validation of connected compositions of SWC
 - → dedicated <u>additional</u> environment <u>outside</u> Simulink on C-code level needed
 - → requires external additional tools outside Simulink respect to
 - Architecture design
 - Whole virtual system validation
 - => Different skills, longer turnaround times, complex refactorings, ...

Virtual Validation Environment

State of the Art

- Model based development and validation of individual SWC → is possible within Simulink
- Model based development and validation of connected compositions of SWC
 - → dedicated <u>additional</u> environment <u>outside</u> Simulink on C-code level needed
 - → requires external additional tools outside Simulink respect to
 - Architecture design
 - Whole virtual system validation
 - => Different skills, longer turnaround times, complex refactorings, ...

Vision

- Integrated virtual system development in one tool environment for architecture/interfaces and behaviour modelling and implementation
- Specify the distributed SW architecture
- Early validation of distributed system, within Simulink and System Composer

Required / Expected System Composer Roadmap

Step 1: Modelling&Validation a Composition of 1...n SWC's within one ECU

- 1. System Composer authoring decomposition of AUTOSAR SWC
 - → Requires S/R and C/S-AUTOSAR-Support incl. RTE Status API
- 2. Modelling and Virtual Function Buss Validation through Simulation
- 3. Validation through Simulation including the AUTOSAR Middleware
 - → Requires ability to implement/configure the AUTOSAR Middleware within the System Composer

Step 2: Modelling&Validation a Composition of 1...n SWC's in 1...m ECU's

- 1. System Composer authoring the decomposition of <u>distributed</u> AUTOSAR System
 - → Requires full AUTOSAR Support incl. com.-network design and ECU-partitioning
- 2. Validation through simulation including a AUTOSAR middleware
 - → Requires the ability to implement/configure the AUTOSAR middleware within the System Composer

4 From native Simulink to System Composer

Transition from a control design tool to

- → System design tool
- → SW design tool

What is still missing

- Additional semantic to connect to Simulink behaviour models
- Methods/Services
- Full featured Middleware (RTE, BSW, COM, Diagnostics ...)
- Out of the box modelling of various kinds of communication busses
- Enhanced Data types
 - Invalid values
 - Split Scalings (Scaled & Enum)
 - Bitfields
- → Full AUTOSAR support

Overview

Body&Comfort Domain at Mercedes-Benz

Model-based Development of distributed Body&Comfort E/E-Systems in a distributed organisation

Future Challenges and Roadmap for Virtual integration of distributed systems

Success Factors, Questions and Challenges, Conclusion

Success Factors

- Incremental approach
- Long term strategic activity
- Common AUTOSAR based integrated development environment for distributed body application functions
 - Joint centralized database for communication and SW-Components
- Well defined SWC AUTOSAR pattern which is intuitive applicable by the SL graphical language
- Active and continues activity to close gap's and shortcomings in the AUTOSAR standard
- Close and trusting cooperation with all tool suppliers
- Close and trusting cooperation with 'The Mathworks' to close identified shortcomings and gap's
- Toolkit to develop standardized and reusable AUTOSAR compliant application function libraries

This Enables

- Simplified and seamless validation using 'virtual integration' in conjunction with the AUTOSAR middleware
 as early as possible in the development process
- Simplified and automatic bug free integration on all body ECU's
- Shorter development times

Open Questions and Challenges

- What is the typical definition domain of application functions to be developed using Simulink?
 - Mechatronic Control functions including plant models
 - AI applications
 - Data driven applications
 - **-** ... ?
- Were are gaps?
 - Data management (Object lists, run-time databases)
 - Real-time video synthetization in the area of head-light and ambient-light
 - **-** ... ?
- How does Simulink cooperate / compete with pure source code development environment's?

Conclusion

- AUTOSAR is an enabler to provide standardized and reusable body and comfort functions at Mercedes-Benz!
- Continuous and early **virtual validation through simulation** increases maturity of our functions and is an enabler to reduce 'time to market' for new innovative body and comfort features and **must be possible** within the function modeling phase **at any time with adjustable accuracy**!
- Switching tools in the area of architecture design and model based function must be removed in order to speed up and simplify the application development process further!

