Masterclass

Scene and Scenario design for ADAS Simulation

October 20, 2022 | Stuttgart

Maxime François
Peter Fryscak

Agenda

- 1. Introduction
- Testing ADAS Systems
- 3. Cuboid scene and trajectory-driven scenario design
- 4. Photorealistic scene and logic-driven scenario design
- 5. Conclusion

Industry trends drive MathWorks investments

Virtual Worlds
are required for
design and verification

Multidisciplinary Skills

are needed as teams are expected to learn and apply new disciplines

Software

Safety, Security, Agility at scale

Code

C/C++ GPU HDL

Architectures

AUTOSAR ROS DDS

RoadRunner product family

MATLAB & Simulink

product family

Polyspace product family

Scene and scenario design answers a need

Agenda

- 1. Introduction
- Testing ADAS Systems
- 3. Cuboid scene and trajectory-driven scenario design
- 4. Photorealistic scene and logic-driven scenario design
- 5. Conclusion

Virtual testing framework for autonomous systems

ADAS system under test

Autonomous Emergency Braking (AEB)

 If driver fails to apply brakes in time, AEB system engages automatically to avoid or mitigate collision

Agenda

- 1. Introduction
- Testing ADAS Systems
- 3. Cuboid scene and trajectory-driven scenario design
- 4. Photorealistic scene and logic-driven scenario design
- 5. Conclusion

Automated Driving Toolbox

Overview

Automated Driving Toolbox

Cuboid Simulation

Presentation workflow

Using the Automated Driving Toolbox

Load scene

Scenario Add Simulink Export

Closed loop simulation

Load a pre-built scene into the app

Load scene

Scenario variations

Add sensors

Simulink Export Closed loop simulation

Programmatic scenario variations

Load scene

Scenario variations

Add sensors

Simulink Export Closed loop simulation


```
function [scenario, egoVehicle] = AEB CCFtap VUT 10kph GVT 30kph (nonEgoSpeed)
% createDrivingScenario Returns the drivingScenario defined in the Designer
% Constant for all AEB scenarios
collisionTime = 10.0;
nonEgoInitialPosition = -nonEgoSpeed*collisionTime;
% Construct a drivingScenario object.
scenario = drivingScenario;
% Add all road segments
roadCenters = [0 160 0;
    0 -160 0];
marking = [laneMarking('Solid')
    laneMarking('Dashed')
    laneMarking('Solid')];
laneSpecification = lanespec(2, 'Width', 3.5, 'Marking', marking);
road(scenario, roadCenters, 'Lanes', laneSpecification, 'Name', 'Road');
% Add the non-ego actors
globalvehicletarget = vehicle(scenario, ...
     'ClassID', 1, ...
    'Position', [1.75 nonEgoInitialPosition 0], ...
    'FrontOverhang', 0.9, ...
    'Wheelbase', 2.8, ...
    'Mesh', driving.scenario.carMesh, ...
    'Name', 'Global Vehicle Target ');
waypoints = [1.75 nonEgoInitialPosition 0;
    1.75 100 0];
speed = nonEgoSpeed;
trajectory(globalvehicletarget, waypoints, speed);
```


nonEgoSpeed = 5m/s

nonEgoSpeed = 10m/s

nonEgoSpeed = 15m/s

Add sensors to our ego vehicle

Load scene

Scenario variations

Add Simulink Export

Closed loop simulation

Export scenario and sensors to Simulink

Load scene

Scenario variations

Add sensors

Simulink Export Closed loop simulation

Automatic generation

Run closed-loop simulation

Run closed-loop simulation

Diagnostic Viewer

Add Simulink Closed loop Scenario Load scene **Export** simulation variations sensors Q 2 - 0 - 0 Logic Analyzer Bird's-Eye Scope Inspector **Metrics Assessment AEB Using Sensor Fusion Test Bench Model Button** Click The Button Before Relative Distance AEB Status Steering Angle Curvature Sequer Curvature Sequence System Time FCW Activate Relative Yaw Angle ego_car_stop Ego Car Stop Longitudinal Velocity AEB Controller Sensors and Environment

Copyright 2018-2022 The MathWorks, Inc.

Results from the simulation

Load scene

Scenario variations

Add sensors

Simulink Export Closed loop simulation

Agenda

- 1. Introduction
- Testing ADAS Systems
- 3. Cuboid scene and trajectory-driven scenario design
- 4. Photorealistic scene and logic-driven scenario design
- 5. Conclusion

RoadRunner Product Family

3D Scene and Scenario workflow

Using RoadRunner tool suite and the Automated Driving Toolbox

Import scene using Industry Standards

And customize it

Scene & Scenario design

Connect MATLAB to RoadRunner

Define behavior

Run Simulation Scenario variation

Import scenario using Industry Standards

Or re-design it using RoadRunner's logic editor

Scene & Scenario design

Connect MATLAB to RoadRunner

Define behavior

Run **Simulation** Scenario variation

Import scenario using Industry Standards

Or re-design it using RoadRunner's logic editor

Scene & Scenario design

Connect MATLAB to RoadRunner

Define behavior

Run Simulation Scenario variation

Anchoring system in RoadRunner Scenario

- Position actor and waypoints relatively to an anchors
- The anchors allow reusability of the scenario within multiple scenes

Interact with RoadRunner Scenario using its gRPC API In MATLAB

Scene & Scenario design

Connect MATLAB to RoadRunner

Define behavior

Run Simulation Scenario variation

RoadRunner API

- Starting/Closing RoadRunner
- Change scenario variables
- Running scenario simulations
- Data acquisition such as trajectory and speed
- Export to OpenSCENARIO

Leverage co-simulation to control vehicles' behavior

Scene & Scenario design

Connect MATLAB to RoadRunner

Define behavior

Run Simulation Scenario variation

RoadRunner Scenario connects with actors in MATLAB, Simulink, and CARLA

Actors can read scenario states

- Action commands (path, speed, lane change, lateral offset)
- Pose and velocity of all actors in the scenario
- Dimensions of all actors
- Map lanes and lane boundaries

Actors write scenario states

 Their pose and velocity for each scenario simulation step

Built-in Actors

Leverage co-simulation to control vehicles' behavior

Leverage co-simulation to control vehicles' behavior In Simulink

Scene & Scenario design

Connect MATLAB to RoadRunner

Define behavior

Run Simulation

Leverage co-simulation to control vehicles' behavior

In Simulink

Scene & Scenario design

Connect MATLAB to RoadRunner

Define behavior

Run Simulation

AEB Sysyem

Run closed-loop simulation

Scene & Scenario design

Connect MATLAB to RoadRunner

Define behavior

Run Simulation

Run closed-loop simulation

Scene & Scenario design

Connect MATLAB to RoadRunner

Define behavior

Run Simulation

Generate scenario variations programmatically

Scene & Scenario design

Connect MATLAB to RoadRunner

Define behavior

Run Simulation Scenario variation

The **Euro NCAP** standard recommends testing with scenarios by varying **VUT and GVT speeds**.

Test speed	Part 1 (clothoid)			Part 2 (constant radius)		
	Start Radius R1 [m]	End Radius R2 [m]	Angle α [deg]	Start Radius R2 [m]	End Radius R2 [m]	Angle β [deg]
10 km/h	1500	9.00	20.62	9.00	9.00	48.76
15 km/h	1500	11.75	20.93	11.75	11.75	48.14
20 km/h	1500	14.75	21.79	14.75	14.75	46.42

Create a RoadRunner Scenario variable:

Generate scenario variations programmatically

Scene & Scenario design

Connect MATLAB to RoadRunner

Define behavior

Run Simulation

```
load("CCFtapVariationData.mat")
          disp(CCFTapVariationData)
          variantID = 9:
         vutSpeed = table2array(CCFTapVariationData(variantID,1));
          gvtSpeed = table2array(CCFTapVariationData(variantID,2));
          vutSpeed = vutSpeed * 0.2778; % convert VUT speed from km/hr to m/s
          gvtSpeed = gvtSpeed * 0.2778; % convert GVT speed from km/hr to m/s
10
          rrApp.setScenarioVariable("VUT Speed",num2str(vutSpeed))
11
12
          rrApp.setScenarioVariable("GVT Speed",num2str(gvtSpeed))
13
14
          % 2. Get the GVT wait time value from | CCFtapVariationData|.
15
         gvtWaitTime = table2array(CCFTapVariationData(variantID,6));
16
17
         % Update the |GVT WaitTime| variable of RoadRunner Scenario.
18
19
20
          rrApp.setScenarioVariable("GVT Wait",num2str(gvtWaitTime))
21
22
         % Based on the VUT speed, set the Euro NCAP path parameters in the
23
         % RoadRunner Scenario.
24
25
          rrApp.setScenarioVariable("VUT Radius", ...
              num2str(table2array(CCFTapVariationData(variantID,4))))
26
27
          rrApp.setScenarioVariable("VUT Beta", ...
              num2str(table2array(CCFTapVariationData(variantID,5))))
```


Export scenes to driving simulators and graphics engines

Export to common file formats for use in third-party applications

Filmbox (meshes)

OpenDRIVE (semantics)

Export scenarios to OpenSCENARIO

OpenSCENARIO V1.x

OpenSCENARIO V2.0

https://github.com/esmini/esmini

```
do parallel:
82
           ego.drive() with:
83
               along(sedan route)
84
               speed(16.66mps, at: start)
85
           serial:
86
               cut-in vehicle.drive() with:
                   along(sedan2 route)
87
88
                   speed(5.5mps, slo
89
                   until (cut-in
90
               parallel:
                                    MathWorks is an ASAM Member
91
                   cut-in vehicle.
92
                   cut-in vehicle.
                                     and actively participates in the
93
                       speed (15mps,
                                          OpenSCENARIO 2.0
94
               with:
95
                   until (ego.time
                                          Implementers Forum
96
```

Partner with MathWorks to extend scenario workflows

Engage with MathWorks engineers through proof-of-concept projects or Consulting Services to generate scenes and scenarios from your recorded data

Partner with MathWorks to extend scenario workflows

Engage with MathWorks engineers through proof-of-concept projects or Consulting Services to generate scenes and scenarios from your recorded data

Agenda

- 1. Introduction
- Testing ADAS Systems
- 3. Cuboid scene and trajectory-driven scenario design
- 4. Photorealistic scene and logic-driven scenario design
- 5. Conclusion

Key Takeaways

- Design and test simple driving scenarios using Automated Driving Toolbox
- Use RoadRunner to create realistic 3D scenes
- Design scenarios interactively using RoadRunner
- Perform co-simulation for scenario testing between RoadRunner and Simulink

Call to action

- Explore examples available in the documentation
- Partner with MathWorks to extend scenario workflows

Autonomous Emergency Braking with RoadRunner Scenario

Masterclass

Scene and Scenario Design for ADAS Simulation

October 20, 2022 | Stuttgart

Maxime François
Peter Fryscak

