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Outline

* Control algorithms design challenges

* Machine learning for control design
* (Case study 1: Adaptive MPC with ML-based LPV for an engine application
* Case study 2: Truck CACC with Reinforcement Learning
* (Case study 3: Truck CACC with PID-based Reinforcement Learning
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Control software

Control design & algorithms — feedback
controls, supervisory, governors

Sensing & monitoring — sensor fusion, virtual
sensors & estimators

Diagnostics & prognostics — faults/failures
detection, isolation, prediction, service, OBD

Software V&V and certification — AUTOSAR,
ASPICE, ISO-26262

ECU/ECM base software — service &
abstraction layers, IO interface

Telematics/wireless communication — V2X,
Edge/Cloud

Actuators
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Controls challenges in commercial vehicle market

STAGE V.VISION

A o o = Complexity with adoption of emerging
i e D technologies
B ) SO EI = New-energy powertrains: EV, fuel cell,
hybrid, alternative fuels

= Connectivity and Automation

= Optimal performance - profit margin
= QOperational efficiency e.g. individual vehicle

to fleet
= Reduce robustness margins with
,0 adaptation/learning
o = Constraints are growing
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Control Design

Algorithms
[
[ |
Model Free Model-Based
PID (switching
modes/gain Robust Adaptive Nonlinear Stochastic Optimal
scheduled)
Model Free RL H-infinity Direct Backstepping DP/LQR
Mu Synthesis Indirect Sliding mode MPC
.Feed_bagk Model-Based RL
linearization
— —/
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Next generation control design and algorithms r
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Machine learning (ML) to bridge the gap?

* Case study 1: Adaptive MPC with ML-based LPV developed models
for an engine application
* Utilize machine learning to develop models structured for control design

* Case study 2: Truck CACC with Reinforcement Learning
* Pure data driven approach with deep learning and RL algorithms

* Case study 3: Truck CACC with PID-based Reinforcement Learning
* RL with imposed control structure on agent

*MPC: Model Predictive Control LPV: Linear Parameter Varying RL: Reinforcement learning CACC: Cooperative Adaptive Cruise Control
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Case study 1: Control-oriented Modeling and Predictive Control of Advanced Dual Fuel
Natural Gas Engines

NSF GOALI/Collaborative Research: MTU, UGA and Cummins
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ML-based system identification for control design

* Pros

* Enables to deploy model-based control design from control theory with
proven stability, robustness and optimality

* Utilizes advancement in ML to improve system identification methods

* Cons
* Needs controls engineering and design expertise

* Quality of input/output measured data (excite system dynamics, signal-to-
noise ratio, sampling/frequency resolution)
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Machine learning (ML) to bridge the gap?

* Case study 1: Adaptive MPC with ML-based LPV developed models
for an engine application
* Utilize machine learning to develop models structured for control design

* Case study 2: Truck CACC with Reinforcement Learning
* Pure datadriven approach with deep learning and RL algorithms

* Case study 3: Truck CACC with PID-based Reinforcement Learning
* RL with imposed control structure on agent

*MPC: Model Predictive Control LPV: Linear Parameter Varying RL: Reinforcement learning CACC: Cooperative Adaptive Cruise Control
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Reinforcement Learning for controls
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= Develop Plant/Environment
Model with training scenario

= Define Observations (feedback),
reward (cost function)

= Select learning algorithms e.g.
DDPG, TD3

= Define the NN for agent (actor &
Critic)

= Train the actor (controller) with
repeated episodical simulations

= Select the best agent

= Check robustness and repeat as

needed



Case study 2: Truck CACC with RL

)

)

Traffic

RL Agent-CACC ACC e
] \ \
{ \ S—
'O = Y “O——o:
- A ‘&
= Trailing Truck Speed Controlled by RL Agent
== Trailing Truck (vehicle) Speed
32 = Lead Truck (Vehicle) Speed
5 3
x10 2
8 T T T 3 30
g
&
6 1%
Follower Truck with Reinforcement Learning Controller %’
28
4+ )
— 27
V1T obs observation TD3 agent - Case study 1
2 i
26
v_LT 'E
reward d action g 0 % 10 20 30 40 50 60
——————— L < Time (sec)
Follower_Truck % -2 ) 4 Selected Agent Distance Tracking Performance
Lead_Truck scel IsDone Isdone E = Distance Gap Between Trucks
g -4 B ~ = =Distance Gap Target
Signal Processing for RL CACC RL Agent < 35t Initial Pistance
-6 B
&
-8 4 s 30t
3
=
-0} - -
a
_1 2 L | I L Distance Error < 1 meter
0 200 400 600 800 1000 201
Episode Number e e e
15 ‘ ‘ ‘ - ‘
0 10 20 30 40 50 60

MathWorks Automotive Engineering Conference 2020

Time (sec)

Cummins | 11



Reinforcement Learning for controls

* Pros
* Applicable to complex systems hard to apply classic control theory
* Cons

e  Environment model to simulate different scenarios/conditions

* Reward function engineering
= enforce constraints

* Hyper-parameters tuning: NN structures, learning algorithms, learning
specific parameters

* Black-box control model w/o interface for fine tuning on real system
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Machine learning (ML) to bridge the gap?

* Case study 1: Adaptive MPC with ML-based LPV developed models
for an engine application
* Utilize machine learning to develop models structured for control design

* Case study 2: Truck CACC with Reinforcement Learning
* Pure data driven approach with deep learning and RL algorithms

* Case study 3: Truck CACC with PID-based Reinforcement
Learning
* RL with imposed model structure of agent from control theory

*MPC: Model Predictive Control LPV: Linear Parameter Varying RL: Reinforcement learning CACC: Cooperative Adaptive Cruise Control
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RL with imposed structure from control theory

o= = Impose actor NN structure from
LT control theory such as
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Case study 2: Truck RL-based CACC design with actor

NN representing PID control
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RL with imposed structure from control theory

* Pros
* Deploy methods from control theory with proven stability, robustness
* Utilize controls development and calibration processes and tools

e Cons
* Controls expertise
e Environment model to simulate different scenarios/conditions
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Concluding remarks

* Need for next generation control design
* Machine learning provides opportunities to enhance control design
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