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National and Global Al/ML interest

National Al Initiative Act of 2020 (NAIIA)

Became law on January 1, 2021

As part of the “William M. (Mac) Thornberry National
Defense Authorization Act for Fiscal Year 2021”,

H.R. 6395, Division E.

DIVISION E—NATIONAL ARTIFICIAL
INTELLIGENCE INITIATIVE ACT OF 2020

SEC. 5001. SHORT TITLE.

This division may be cited as the “National Artificial Intel-
ligence Initiative Act of 2020".

Prioritize Al R&D

Grow and sustain U.S. research

leadership and capacity

Strengthen Al Research
Infrastructure
Enhance access to high

computing resources

Advance Trustworthy Al
Modernize governance and technical

standards for Al-powered technologies,

protecting privacy, civil rights, civil

liberties, and other democratic values

Microsoft
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quality data, models, and  [RAULCECELE
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Center for At

Leverage Al for Government and
National Security
Apply Al to improve provision of
government services and national
security

Promote International

Promote Al Engagement
International Engage with like-minded allies

Al to promote a global Al
environment supportive of

pEngagement democratic values

Train Al-Ready Workforce
Provide Al-ready education at
all levels: K-12, college, re-
training, re-skilling, R&D
workforce

National Center for Supercomputing Applications at the University of lllinois

at Urbana-Champaign

Energy Ti

https://www.ai.gov/wp-content/uploads/2023/01/NAIRR-TF-Final-Report-2023.pdf
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. . . Machine and Deep
Deep vs conventional machine learning Learning in Oncology,
Medical Physics and
REI)

Conventional “shallow” learning process

Artificial Intelligence
{humanized systems able Feature Detector/
to perform intelligent ———————b Features e
R A extractor Classifier
Issam El Naga
Martin J. Murphy
Input raw ;
Output labels Editors
data P
Deep learning process
Deep Learning
(data abstraction with Deep learning algorithm
learning representation,
e.g, CNN)
@ Springer
L bk it tati Learning task
El Naga, BJR 125t Annv., 2020 ARG CERY spreseniiiion (classificatiop/detection)
) [ | [ |
Input PET/CT image Convolutional layers

Fully connected layers

Output

Pooling layers

Malignant
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Zaidi and El Naga, Annu. Rev. Biomed. Eng., 2021




BJR 125TH ANNIVERSARY SPECIAL FEATURE: REVIEW ARTICLE

Artificial Intelligence: reshaping the practice of
radiological sciences in the 21st century
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ML at Moffitt

Moffitt Cancer Center: Why we are building the
% (@mldonco) first machine learning department in oncology

By Issam El Naga and Dana Rollison

VISION

__________________________________________________________ MISSION
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To transform personalized '

___________ R . NT IRGINIA To design, develop,
cancer care and accelerate 188 o onTi - and translate state-
scientific discovery in of-the-art patient-
cancer research with

__________ | : ‘ Y centered machine
machine/deep learning g and deep learning

‘ . Meffltt @ﬂm@gm?

algorithms
Magnolia Campus
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VALUE VALUE VALUE
Patient-centered ML/DL for Unbiased, generalizable, Translate ML/DL findings
facilitating cancer care and and interpretable ML/DL

into the clinic to improve
cancer care and research

research from blended data

Moffitt.org/MachinelLearning




MIL Strategic Priorities @ Moffitt

Primary Secondary

Faculty Strategic Priority Staff (ML Engineers)

1. Integration of ML into MCC research and clinical care

1.1 Develop a robust and secure ML infrastructure that also leverages existing MCC
resources

1.2 Convert clinical care data into research data including linkage of unstructured data
using NLP methods

1.3 Establish ML working group for R&D (Machine Leaming League [MLL])

2. Establish translational ML research program in priority areas

2.1 Multimodality radiological and pathological imaging for diagnostic and outcomes
2.2 Information retrieval and annotation with natural language processing (NLP)

2.3 Outcome modeling and decision support by longitudinal integration of pan-omics data
and using PROs for retrospective and prospective studies

2 4 Molecular and computational biclogy and in silico trial designs

3. Establish basic ML research programs in priority areas
3.1 Visual analytics, explainable and interpretable ML/AI

|3.2 Automated ML architectures and evolutionary learning
3.3 Physics-based quantum ML, hybrid systems, and stochastic processes
4. Develop team science initiatives

4.1 Program project or center of excellence to address clinical ML role

4.2 Program project or biotechnology resource to address basic science ML role
5. Develop residencyftraining programs

5.1 PhD/Residency programs in ML for oncology

Moffitt.org/MachineLearning
I @ -




El Naga Lab / Machine Learning
3y @ielnaga

Optimal Decision Making Using Panomics Analytics with

Federated learning
I.  Building rfich

Outcome Models

Il. Optimizing
Decision Making
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Funding resource: NIH/NCI RO1 CA233487 + Supplementary

el

» » @ w
Paticer's tamor case :..{

Dipesh Niraula, PhD

[ o]

i

i MIDRC |

Palak Dave, PhD

John Mayfield, M.D.
Medical Imaging and Data Resource Center (MIDRC) for Rapid Response to COVID-19 Pandemic
Data Science to Improve Treatment Planning for Advanced

MEDICAL IMAGING AND DATA RESOURCE CENTER. Naveena Gorre, MS
Funding Resource: University of Chicago (Prime: NIH/NIBIB 75N92020D00018/75N92020F0001)

Image-guided radiotherapy (sight & sound)

)

Muhammad Ali, PhD
Ibrahim (Abe) Oraiqat, PhD

Glebys Gonzales, PhD q
Funding resources: NIH/NCI R37 CA22221, R41 CA243722, RO1CA266803

Prostate Cancer Patients Treated with Radiotherapy
Funding resources (with Heather Jim) : W81XWH-22-1-0277

Current Paradigm (Physician centered):
Physical + clinical factors
Short-term
" outcome
Ruwani Fernando, PhD

Proposed Paradigm (Patient-centered):
Physical + clinical factors +Qol

Adaptive radiotherapy with MR-Linac

Undergrad students: | . !
Funding source: Industrial alliance

Skylar Kyzer
Yasmin Saeed

Jesutofunmi Fajemisin, MS

= Long-term
—) outcome

Denis Dudas, PhD




The Pan-Omics of Oncology

Collect Screen Aggregate  Analyze
/Specimen\ Specimen Data Data
:\_ﬁ = '/a,--:--; PANOMIC SPECIMEN CLINICAL
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- Image i@ Epigenomics S
@ Radiomics
Q Dosimetry

El Naga et al, PMB, 2017




Modern Radiomics

MEDICAL PHYSICS

The International Journal of Medical Physics Research and Practice

Special Issue Paper

Machine and deep learning methods for radiomics

Michele Avanzo % Lise Wei, Joseph Stancanello, Martin Vallieres, Arvind Rao, Olivier Morin, Sarah A.

Mattonen, Issam El Naga ... See fewer authors ~

First published: 17 May 2020 | https://doi.org/10.1002/mp.13678 | Citations: 51
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Imaging Segmentation of single (multiple) images

Feature-based method ‘ ‘ Featureless method
Feature Extraction Feature Extraction
Radiomic features @ Deep features
Geometry Intensity ® i)
® © g
e % o
Texture Filter (Gabor, Wavelet) @ .
Model Construction
Supervised Unsupervised
CNN RNN: Autoencoder: VAE, Convolutional AE
Input image LSTM, GRU ) R
" Restricted Boltzmann Machine
‘ Convolution
Feature Selection 7 :
Visible units = Hidden units
Supervised Unsupervised - .
Filter: Spearman Correlation-based  PCA Pooling .

Wrapper: SYM-RFE tSNE

Embedded: LASSO

Model Construction

Classification \ Actuarial Analysis
Supervised Unsupervised Cox Regression

{cldstenna) Random Survival

Forests

Logistic Regression
Support Vector Machines Hierarchal clustering
Random Forests K-means/Fuzzy cmean

Neural Networks

w

Deep Belief Networks

'

Prediction & Prognosis

Binary Classification: ROC, AUC
Actuarial outcome prediction: Harrel's c-index, Kaplan-Meier Plot

Avanzo, Wei, Med Phys, 2020



Radiomics Toolkits I: Imaging

Pre-processing:
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Radiomics Toolkits |l: Modeling (DREES)

File Type Matlab

Read data

Save Data in Matlab format

Process data
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Deep Survival Radiomics model for Liver Cancer

10 times 5-fold Cross-validation
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Wei et al, Physica Medica, 2021
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Deep Learning Prediction of post-SBRT Liver Function Changes and NTCP
Modeling in HCC based on DGAE—MRI
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Multi-omics response model with deep survival neural networks @

20 times of 5-fold cross validations

(N,2) Volume
p"“ C-index (95%Cl) RP2 LC
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Cui et al, JROBP, 2021



Software tools (prototypes) for Al Clinical Application

Recommender System for adaptive
intervention in radiotherapy (ARCIiDS)
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Multi-institutional Al Platform for
image interpretability (MIDRC)

High Performance

Data Platform/Covid Django Cmp"m;:gc(g(;xmws
Images
ML/DL
E N Input
Data Commons Amazon EC2

Launch data portal METETTYTET
redireets 10 Gen3/XNAT TETETEEW
from which the required i TETERTTY
;zmoa:i ddﬂt“ sanibe Visnalization |wwwwrwwww

ETTYETRTY

ETTRETYTETW
Choose the parameters TEETYENN

from DNN  models,
Training menu and
perform training from
scratch/transfer learmning

Obtain the model

prediction — labels Label, Model
as well as model [ ¥ confidence

confidence.

Save and
Interpret
the model
trained?

|

H ps/activation
maps/ Shapley, LIME
values,

Re —Train the
model.

Visualization [F—=)

» User Factors in Al implementation

Niraula, Nature Scientific Reports, 2023; Sun CMPB, 2022

Gorre, SPIE, 2023; PMB, 2023




Al/ML is nothing but perfect!

Racial Bias Found in a Major
Google Flu Trends (GFT) (Ginsberg, 2009) Health Care Risk Algorithm

e GFT called out sick 2013 due to overestimation!

Black patients lose out on critical care when systems equate health needs with costs

Predicting pneumonia risk (Caruana, 2015) ———
* Patients with pneumonia and asthma to be at a lower risk e

of death from pneumonia than patients with pneumonia Man is to Computer Programmer as Woman is to
but without asthmal! Homemaker? Debiasing Word Embeddings
Skin cancer risk prediction (Esteva, 2017) Amazon scraps secret Al recruiting tool that
* Presence of a ruler as a sign of high risk would skew showed bias against women
prediction

: L. _ Study finds gender and skin-type bias in
Lung disease prediction from xray (Rajpurkar, 2017) commercial artificial-intelligence systems

* Presence of tube can indicate high risk Examination of facial-analysis software shows error rate of 0.8 percent for
light-skinned men, 34.7 percent for dark-skinned women.

Covid-19 infection of Al (Deshpande, 2020; Roberts, External Validation of a Widely Implemented
2021, El Naga, 2021) Proprietary Sepsis Prediction Model in Hospitalized
Patients

. Unreliable Al models for Covid-19 prediction

Andrew Wong, MD'; Erkin Otles, MEng?>; John P. Donnelly, PhD%; et al

EPIC's Sepsis Model Is Not Ready for Prime Time

Aaron J. Calderon, MD, FACP, SFHM, reviewing Wong A et al. JAMA Intern Med 2021 Aug

i D a t a q u a I ity a n d C O n text m a tte rS Despite its widespread use, the proprietary electronic health record system missed sepsis 67% of the time.



Check List for Al/ML in

Medical Physics (CLAM

* Purpose and justification of Al/ML
algorithm selection

» Dataset characteristics (acquisition,
size, partitioning [3Ts: training,
tuning, testing])

e ML methods

* Optimization, loss function,
augmentation, regularization

e Performance metrics and evaluations
(internal, external)
* Significance of results
* Interpretation of ML performance
* Clinical translation and actionability

AlIN MEDICAL PHYSICS

" -MEDICAL PHYSICS

TABLE 1 Checklist for Al in Medical Physics (CLAMP)

Indicate whether each section clearly summarizes or describes:

Checkboxes

1. Abstract
a. Purpose, rationale, novelty or significance

b. AlI/ML methods and data type, dataset partitioning into training, validation (tuning), and test sets (include
numbers used in training, validation, and test sets)

c. Main results, including statistical analyses
2. Introduction
a. Purpose and justification of using Al/ML algorithm approach
b. Contribution(s) of Al/ML to medical physics application
c. Stage of development (e.g., pilot study, mature study)
3. Materials
a. Dataset characteristics including sample size and clinical acquisition sites

b. Device(s) used for data acquisition (e.g., scanner makes), start-end dates of acquisition (or equivalent
means with biotechnology generated data), and any data harmonization, augmentation, and enrichment
strategies, or pre-processing are clearly described

c. For imaging data: image or data acquisition modality, acquisition protocol, or parameter ranges are detailed

d. For patient data: method to obtain the sample, representativeness of the population for the purpose of the
study, IRB approval (or equivalent), and relevant patient demographics plus clinical variables such as
prevalence(s) of disease(s) or lesion characteristics

e. For phantom data: Type of phantom and method for generating phantom data
. Data composition appropriateness for AlI/ML application

g. Description of the “ground truth,” that is, the reference standard, including the annotation process, level of
subjectivity, and uncertainty

h. Data partitioning into training, validation (tuning), and test sets including any criteria to mitigate bias and
justification of sample sizes

i. Final validation using public dataset or study dataset to be shared/made publicly available (desirable but
not required).

4.1 Methods: Machine learning algorithm

a. Methodology in sufficient detail to allow replication, including model architecture, hyperparameters, inputs,
dimensionality of the input (e.g., 2D or 3D images), pre-processing, output type and definition, and
discretization/binning, if any.

b. Training/optimization method including loss function, regularization approach, data imbalance mitigation
process (if needed), measures to minimize overfitting and bias, and ablation studies, if any.

c. Al/ML software code to be shared/made publicly available (desirable but not required).
4.2 Methods: Performance and statistics

a. Performance metric(s) including any postprocessing (such as scoring criteria, decision threshold, binning)
of the AlI/ML output.

b. Method(s) to estimate the uncertainty (such as 95% confidence intervals) of the performance metric(s).

c. Significance of the obtained results compared to the null hypothesis (if applicable) or compared to a
suitable benchmark metric.

d. Subgroup analyses for important subgroups (e.g., by age, lesion size).

e. Demonstrative results for the training, validation (tuning), and test sets.

o

Discussion
a. Conclusions as supported by the results.
b. Limitations of the study.

c. Discussion/summary of innovation (algeorithm or application), significance (clinical or scientific), and/or
contributions to the field of medical physics.

Yes No N/A

issam El Naga'
John M. Boone?
Stanley H. Benadict®
Mitchell M. Goodsitt*
Heang-Ping Chan*
Karen Drukker®
Lubomir Hadjiiski*
Dan Ruan®
Berkman Sahinar’
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Novelty

Please briefly (150 words or less) describe the novelty and/or significance of your study.:
N/A

If there is anything you wish to tell the editor that is not covered in this submission questionnaire,
please enter it here:
N/A

Artificial Intelligence and Machine
Learning

Is this article on the topic of artificial intelligence or machine learning?:
Yes

The number of training, validation, and test sets are described in the Abstract. The number of input
data and output results, along with the type of data (e.g. MRl images, CT images, etc.) are
mentioned in the Abstract.:

No

The stage of development is described in the manuscript Introduction.:
Yes

The data, its source, and data composition are described in detail in the Materials section.:
No

The details of the machine learning algorithm, including pre-processing and training method, are
provided in the Methods section. All major results are accompanied by appropriate tests of
statistical significance.:

No

The innovation, significance, and/or contributions to the field of medical physics are discussed in
the Discussion section.:
Yes

Author ORCID Status

0 of 1 ORCIDs available.

NIH Funding

No funding has been received from NIH

CrossCheck Manuscript

Never Processed / Send File

Manuscript Iltems
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ML Accuracy versus interpretability
Radiomics Interpretability for Liver Cancr (rad—CAM
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Intelligence augmentation (lIA) instead of Al

Human in the loop!

)>

A “Fundamental Theorem” of informatics

(C. Friedman)

Figure 1.

Tighter Cls but similar predictions!
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Luo, Physica Medica (Editor Choice), 2021
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Human-in-the loop: Predicting Local Control in Liver Cancer

Human only

Pre-treatment
microRNAs

Clinical Factors

Dosimetry

Machine only
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Can Quantum theory help develop more robust Al/ML algorithms? (].'.])

Treatment Planning
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Clinical Decision support
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Take home Messages ™

* Artificial intelligence/machine learning offers new opportunities
to develop better understanding of oncology and its diagnosis,
prognosis, and treatment regimens

* ML/DL algorithms vary in accuracy and interpretability levels and
choice of proper algorithm(s) is an application and data dependent

* Proper development and deployment of Al/ML involves following
guidelines (CLAMP) while adhering to ethical Al standards to
achieve trustworthiness

* To overcome current barriers in Al/ML for healthcare emerging
methods include visualization for interpretability (Grad-CAM) and
behavioral science (human-in-the loop), and physics-based ] L 2 ‘
(quantum computing) techniques

* Collaboration between stakeholders (data scientists, biologists,
physicists, economists, clinical practitioners, regulators & vendors)
will allow for safe and beneficial application of Al in biomedicine,
radiology and oncology
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first machine learning department in oncology
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