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What is the field issue?

Field issue:

« Coca-Cola Freestyle dispensers use a solenoid
actuated valve called Flow Control Module
(FCM) for regulating water flow.

 FCM is one of the highest replaced parts in the
dispenser/field.

« About 50% field return FCMs are good.

 Service cost associated with these field
replacements are high.

 The larger goal is to develop a diagnostics
solution so that good FCMs are not getting
pulled from the dispensers.
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Flow Control Module (FCM)



FCM Diagnostics & Pseudo Pressure Sensor G
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Why can’t we do diagnhostics how? Pseudo Pressure Sensor
 We don’t have a pressure sensor in the line. * Alternate option to a physical pressure sensor.
« We can't tell the difference between FCM fault * ltis a software solution.

and upstream pressure loss.
* This pseudo sensor is the focus of this

» Adding pressure sensor not an option. presentation.
« We can't retrofit the field. « Whatis it?
* Physical sensors add cost * How was it developed?

« Sensors can become another failure point. * How was it deployed?




Physics Behind Pseudo Pressure Sensor (Gt
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Physics Behind Pseudo Pressure Sensor Contd. fréestyle

« See how the V-shaped drop in current travels as the pressure increases.

* The reverse will be true as the pressure drops — the valve will start opening quicker and you will
see the V-shaped drop at a lower current.

* Note, we don’t have oscilloscope quality data in the dispenser. We have low fidelity Op-Amp
based current sensor feedback.

Valve almost did Valve did not open
75 psi pressure 110 psi pressure not open 140 psi pressure




Pseudo Sensor Development — Part 1: Data Collection (Gt
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Hardware-in-Loop Testing Process
* The key is to collect data at dispenser condition using MATLAB
. v'Read test data and
dispenser control board. ]

optimize code.

v'Control code in Simulink.

- Data collected using hardware-in-loop (HIL)
testing process.

 MathWorks helped develop a Hardware Support
Package (HSP) for the dispenser control board. Communicate - read
data back and for Iterate &

Optimize

ownload and deploy
-generated C - code

 HIL testing process enabled data collection at
dispenser condition.

* More than 5000 pour data collected in the test bench
with 10 different FCMs.

Component
Fluidic
 Pressure range for data collection - 1 psito 140 psi at Components
S psi interval. v'Dispenser test conditions R

Freestyle Hardware
— MACKSM Board

v'Test our drivers and board
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Prediction Model: Input is binary current feedback voltage and
output is a predicted pressure. Started with a linear regression V1,1
model.

Using just the
peak voltage V1
for regression.

Prediction model developed using MathWorks Machine Learning
Toolbox.

Current Feedback Voltage (Voltes)
o
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Pseudo Sensor Development — Part 2: Model Development Contd.

* |dentify other features that have a correlation
to pressure.

 Features in the binary current feedback
signal that have correlation to pressure.

« Peak voltage at V-drop (V1), Peak time
(T1), Dip voltage (V2), Dip time (T2), V1-
V2, T1-T2.

» Features that did not have any impact are

* Frequency, raise time, RMS values,
mean, range,

Sample current
feedback signal
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 Multi-variable regression using 6 features.

* The regression model is given below. It is a single
equation using the 6 features and has 26 terms.

120 - Confusion Chart for Multi-Variable Regression Model
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Pseudo Sensor Development — Part 3: Deployment, Testing & .
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Pseudo Sensor Development — Part 3: Test Results
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Conclusion fréestyle

« FCM pseudo pressure sensor developed and deployed in dispensers in the field.
* It is a software in lieu of a physical sensor.
* It has transformed the FCM into a “Smart Component”
* It enables effective diagnostics.

« Ongoing work: FCM diagnostics development using field pseudo sensor data.
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