
[bookmark: _Toc420056289][bookmark: _Toc160417920][bookmark: _Toc167016459][bookmark: _Toc167239560][bookmark: _Toc167265086][bookmark: _Toc167267231][bookmark: _Toc170277032][bookmark: _Toc171936034][bookmark: _Toc171995780][bookmark: _Toc172008375][bookmark: _Toc172032377][bookmark: _Toc172034223][bookmark: _Toc172702984]CONTROL ALGORITHM MODELING GUIDELINES USING MATLAB®, Simulink®, and Stateflow®
[bookmark: _Toc504812246][bookmark: _Toc505423373][bookmark: _Toc505429121][bookmark: _Toc506021459][bookmark: _Toc506028073][bookmark: _Toc153083638][bookmark: _Toc151543885][bookmark: _Toc156018025][bookmark: _Toc156895467][bookmark: _GoBack]Version 4.01（English edition）

Japan MBD Automotive Advisory Board (JMAAB)
31-Mar- 2015
（correct 19-Jun-2015）

■　Copyright
· The copyright of this document belongs to JMAAB.
· JMAAB provides no guarantees with regard to the contents of this document. JMAAB shall not be liable for any failures which occur as a result of using this document. Please note that the information within this document is subject to change or removal without notice.
■　Handling this document
· This document may be reproduced only for internal use and non-commercial purposes. In addition, when quoting from this document, state explicitly that the quote comes from this document, and include the name of the author, Title etc., in accordance with the requirements for citation.
· Please refer to the JMAAB website for any information regarding this deliverable (http://jmaab.mathworks.jp/).
· For any other inquiries, please contact the JMAAB office (jmaaboffice@mathworks.co.jp).
■　Please note:
· This document is English edition of “CONTROL ALGORITHM MODELING GUIDELINES USING MATLAB®, Simulink® and Stateflow® Version 4.0”.
· There were differences between Japanese edition and English edition until Version 3.0. However, they were fixed in Version 4.0. Thus, there may be the case that the even the same rules are different from the past version.

TABLE OF CONTENTS
CONTROL ALGORITHM MODELING GUIDELINES USING MATLAB®, Simulink®, and Stateflow®	1
1.	Introduction	10
1.1. Purpose of these Guidelines	10
1.2. Guideline template	10
1.2.1. ID	10
1.2.2. Title	11
1.2.3. Priority	11
1.2.4. Scope :	11
1.2.5. MATLAB version	11
1.2.6. Prerequisites	12
1.2.7. Description	12
1.2.8. See Also	12
1.2.9. Last Change	12
1.3. Organization of these Guidelines	12
2.	Naming Conventions	13
2.1. Naming Conventions - Overall summary	13
2.1.1. Rule IDs for characters that can be used in names	13
2.1.2. Rule IDs for character length	13
2.1.3. List of naming rule constraints "character type / character length"	13
2.2. General Rules	13
2.2.1. ar_0001: Usable characters for file names	13
2.2.2. ar_0002: Usable characters for folder names	14
2.2.3. jc_0241: Length restrictions for file names	15
2.2.4. jc_0242: Length restrictions for folder names	15
2.3. Internal model rules	16
2.3.1. jc_0201: Usable characters for Subsystem names	16
2.3.2. jc_0211: Usable characters for Inport block and Outport block	16
2.3.3. jc_0222: Usable characters for signal line and bus names	17
2.3.4. jc_0232: Usable characters for parameter names	17
2.3.5. jc_0231: Usable characters for block names	18
2.3.6. jc_0243: Length restrictions for subsystem names	18
2.3.7. jc_0244: Length restrictions for Inport and Outport names	19
2.3.8. jc_0245: Length restrictions for signal and bus names	19
2.3.9. jc_0246: Length restrictions for parameter names	20
2.3.10. jc_0247: Length restrictions for block names	21
2.4. Notes on other used characters	21
2.4.1. na_0035: Adoption of naming conventions	21
2.4.2. jc_0251: Naming restrictions for signals and parameters.	22
2.4.3. na_0014: Use of local language in Simulink and Stateflow	22
3.	Model Architecture	26
3.1.1. na_0006: Guidelines for mixed use of Simulink and Stateflow	26
3.1.2. na_0007: Guidelines for use of Flowcharts, Truth Tables and State Machines	26
3.1.3. db_0143: Similar block types on the model levels	26
3.1.4. db_0144: Use of Subsystems	28
4.	Simulink	30
4.1. Diagram appearance	30
4.1.1. na_0004: Simulink model appearance	30
4.1.2. db_0043: Simulink font and font size	31
4.1.3. db_0042: Port block in Simulink models	31
4.1.4. jm_0002: Block resizing	32
4.1.5. db_0142: Position of block names	33
4.1.6. jc_0061: Display of block names	33
4.1.7. db_0140: Display of block parameters	34
4.1.8. db_0032: Simulink signal appearance	37
4.1.9. db_0141: Signal flow in Simulink models	38
4.1.10. jc_0110: Direction of block	39
4.1.11. jc_0111: Direction of Subsystem	40
4.1.12. jc_0653: Guidelines for avoiding algebraic loops between subsystems	40
4.1.13. jc_0171: Maintaining signal flow when using Goto and From blocks	41
4.1.14. jc_0602: Consistency in model element names	42
4.1.15. db_0146: Triggered, enabled, conditional Subsystems	43
4.1.16. jc_0281: Naming of Trigger Port block and Enable Port block	44
4.1.17. jc_0603: Model description	45
4.1.18. jc_0604: Block shading	46
4.2. Signals	47
4.2.1. na_0010: Grouping data flows into signals	47
4.2.2. na_0008: Display of labels on signals	47
4.2.3. na_0009: Entry versus propagation of signal labels	48
4.2.4. jc_0008 : Definition of a Signal labels.	49
4.2.5. jc_0009 ：Propagation of signal label	50
4.2.6. na_0005: Port block name visibility in Simulink models	52
4.2.7. jc_0082: Display of Inport and Outport block names 1	53
4.2.8. jc_0083: Display of Inport and Outport block names 2	55
4.2.9. db_0097: Position of labels for signals and busses	57
4.2.10. db_0081: Unconnected signals, block inputs and block outputs	57
4.3. Use of of Blocks	58
4.3.1. na_0003: Simple logical expressions for If condition blocks	58
4.3.2. na_0002: Appropriate implementation of fundamental logical and numerical operations	59
4.3.3. jm_0001: Prohibited Simulink standard blocks inside controllers	61
4.3.4. hd_0001: Prohibited Simulink sinks	63
4.3.5. na_0011: Scope of Goto and From blocks	63
4.3.6. jc_0141: Use of the Switch block	64
4.3.7. jc_0121: Use of the Sum block	65
4.3.8. jc_0610: Operator order for Product block	67
4.3.9. jc_0611: Input signal sign during product block division	67
4.3.10. jc_0131: Use of Relational Operator block	68
4.3.11. jc_0161: Use of Data Store Read/Write/Memory blocks	68
4.3.12. Guideline for using the Logical Operator block	69
4.3.13. jc_0011: Optimization parameters for Boolean data types	70
4.3.14. jc_0629: Fcn block use limits	70
4.3.15. jc_0622: Guideline for using the Fcn block	71
4.3.16. jc_0626: Guideline for using the Lookup Table system block	72
4.3.17. jc_0627: Guideline for using the Discrete-Time Integrator block	73
4.3.18. jc_0628: Guideline for using the Saturation Block	74
4.3.19. jc_0650: Block input/output data type with switching function	75
4.3.20. jc_0630: Number of data ports in Multiport Switch block	76
4.3.21. jc_0631: Input of Multiport Switch block to control port	79
4.3.22. jc_0632: Default case port in Multiport Switch block	79
4.4. Initialization	81
4.4.1. jc_0625: Unification of descriptions of external input values as initial values	81
4.4.2. jc_0640: Detection of undefined initial output	82
4.5. Block Parameters	83
4.5.1. db_0112: Indexing	83
4.5.2. db_0110: Tunable parameters in basic blocks	83
4.5.3. jc_0645: Named constant setting	84
4.5.4. jc_0641: Sample time setting	85
4.5.5. jc_0642: Integer rounding mode setting	85
4.5.6. jc_0643: Fixed-point setting	86
4.5.7. jc_0644: Guideline for type setting	87
4.6. Simulink pattern	89
4.6.1. db_0114: Simulink patterns for If-then-else-if constructs	89
4.6.2. db_0115: Simulink patterns for case constructs	90
4.6.3. db_0116: Simulink patterns for logical constructs with logical blocks	91
4.6.4. db_0117: Simulank patterns for vector signals	91
4.6.5. na_0012: Use of Switch vs. If-Then-Else Action Subsystem	93
4.6.6. na_0028: Use of If-Then-Else Action Subsystem to replace multiple switches	94
4.6.7. jc_0658 ：Usage rules for Action Subsystem using conditional control flow	98
4.6.8. jc_0623: Use of Memory block vs. Unit Delay block	101
4.6.9. jc_0624: Guideline for using the Delay block	101
4.6.10. jc_0651: Guideline for use when implementing cast	102
4.6.11. jc_0652: Constant related to timer counter	105
4.6.12. jc_0659: Usage restrictions of signal lines inputted to Merge block	105
4.6.13. jc_0656: Guideline for using the Conditional Control block	107
4.6.14. jc_0657: Retention of output value based on Conditional Control Flow block and Merge block	108
5.	Stateflow	112
5.1. Stateflow variable settings	112
5.1.1. db_0123: Stateflow port names	112
5.1.2. jc_0700: Unused data in Stateflow block	112
5.1.3. db_0122: Stateflow and Simulink interface signals and parameters	113
5.1.4. db_0125: Scope of internal signals and local auxiliary variables	114
5.1.5. jc_0701: Usable numbers in first index	115
5.1.6. jc_0702: Stateflow parameters and constants	116
5.1.7. jm_0011: Pointers in Stateflow	117
5.2. Basic appearance of state transition	118
5.2.1. db_0129: Stateflow transition appearance	118
5.2.2. db_0137: States in state machines	119
5.2.3. jc_0711: Division in Stateflow	119
5.2.4. jc_0531: Placement of the default transition	120
5.2.5. jc_0712: Execution timing for default transition path	122
5.2.6. na_0038: Levels in Stateflow charts	123
5.2.7. na_0040: Number of states per container	124
5.2.8. jc_0720: Guideline for using subcharting	125
5.2.9. jc_0721: Guidelines for using parallel states	126
5.2.10. jc_0722: Guidelines for setting local variables in parallel states	127
5.2.11. jc_0723: Prohibited direct transition from external state to child state	127
5.3. Description of state label	128
5.3.1. jc_0730: Independence of state name in charts	128
5.3.2. jc_0731: Slash (/) in the state name	131
5.3.3. jc_0732 ：Distinction between state name and data item name	132
5.3.4. jc_0733: Order of state action types	133
5.3.5. jc_0734: Number of state action types	133
5.3.6. jc_0740: Usage restrictions of action type exit	134
5.3.7. jc_0501: Format of entries in a State block	134
5.3.8. jc_0735: Semicolons in state label	135
5.3.9. jc_0736: Uniform indentations in Stateflow blocks	136
5.3.10. jc_0737: Uniform spaces before and after operators	138
5.3.11. jc_0738: Guidelines for writing comments in state actions	139
5.3.12. jc_0739: Guidelines for describing texts inside states	140
5.3.13. jc_0741: Timing to update the variables used in the state's transition conditions	142
5.4. Conditions and conditional actions	143
5.4.1. jc_0742: Guidelines for writing Boolean operations in condition labels	143
5.4.2. jc_0770: Placement of conditional statements and action statements	145
5.4.3. jc_0771: Placement of comments in transition lines	146
5.4.4. jc_0772: Execution order and transition conditions of transition lines	146
5.4.5. jc_0752: Parentheses of condition actions	147
5.4.6. jc_0743: Guidelines for writing condition actions	148
5.5. State transition	149
5.5.1. jc_0750: Guidelines for drawing transition lines in Stateflow	149
5.5.2. jc_0751 : Backtracking prevention in state transition	150
5.5.3. jc_0754: Transition actions in Stateflow	154
5.5.4. jc_0753: Condition actions and transition actions in Stateflow	155
5.5.5. db_0151: State machine patterns for transition actions	156
5.5.6. na_0013: Comparison operation in Stateflow	156
5.5.7. jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow	157
5.5.8. na_0001: Bitwise Stateflow operators	158
5.5.9. jc_0655: Prohibited comparison operation of logical type signal in Stateflow	159
5.5.10. jc_0451: Use of unary minus on unsigned integers in Stateflow	160
5.5.11. jc_0755: Guidelines for use of increments/decrements	161
5.5.12. jc_0756: Prohibited use of operation expressions in array indexes	161
5.5.13. jc_0757: Guidelines for describing condition expressions	162
5.5.14. jc_0491: Reuse of variables within a single Stateflow scope	162
5.5.15. jc_0521: Use of the return value from graphical functions	164
5.6. Internal transition of the state transition	165
5.6.1. jc_0760: Starting point of internal transition in Stateflow	165
5.6.2. jc_0762: Prohibited combination of state action and Flow Chart	167
5.6.3. jc_0763: Usage restrictions of multiple internal transitions	168
5.6.4. jc_0761: Statement method when using multiple internal transitions	169
5.7. Flow Chart foundation	170
5.7.1. db_0132: Transitions in Flow Charts	170
5.7.2. db_0134: Flow Chart patterns for If constructs	171
5.7.3. db_0159: Flowchart patterns for case constructs	173
5.7.4. db_0135: Flow Chart patterns for loop constructs	174
5.7.5. jc_0773: Unconditional transition of a flow chart	175
5.8. Flow Chart details	177
5.8.1. jc_0774: Comments on unconditional transition which has no process	177
5.8.2. jc_0511: Setting the return value from a graphical function	178
5.8.3. jc_0775: Number of terminal junctions in Flow Charts	179
5.8.4. jc_0776: Number of inputs to the terminal junction of Flow Charts	180
5.9. Event	180
5.9.1. db_0126: Scope of events	180
5.9.2. jc_0780: Usage restrictions of events	181
5.9.3. jc_0781: Function Call from Stateflow	181
5.9.4. jm_0012: Event broadcasts	182
5.10. Functions within Stateflow	183
5.10.1. na_0041: Selection of function type	183
5.10.2. na_0042: Location of functions	184
5.10.3. na_0039: Use of Simulink in Stateflow charts	185
5.10.4. db_0127: MATLAB commands in Stateflow	185
6.	Miscellaneous: Variants, enumerated type, MATLAB functions	187
6.1. Variant Subsystem	187
6.1.1. na_0037: Use of single variable variant conditionals	187
6.1.2. na_0020: Number of inputs to variant subsystems	187
6.1.3. na_0036: Default variant	188
6.2. Enumerated type data	188
6.2.1. na_0033: Enumerated Types Usage	188
6.2.2. na_0031: Definition of default enumerated value	189
6.3. MATLAB functions	191
6.3.1. na_0018: Number of nested if/else and case statement	191
6.3.2. na_0025: MATLAB function header	191
6.3.3. na_0034: MATLAB Function block input/output settings	192
6.3.4. na_0024: Global variable	192
6.3.5. na_0022: Recommended patterns for Switch / Case statements	193
6.3.6. na_0016: Source lines of MATLAB Functions	194
6.3.7. na_0017: Number of called function levels	194
6.3.8. na_0021: Strings	195
7.	Basis, list of rule parameters	196
7.1. Basis	196
7.1.1. Basis category	196
7.1.2. List of rule basis	196
7.2. Selectable parameters of each rule	200
7.2.1. Interpretation	200
7.2.2. List of rule parameters	200
8.	Terminology/supplementary explanation	207
8.1. Commentary on Simulink terminologies	207
8.1.1. Definition of basic blocks	207
8.1.2. Definition of port blocks.	207
8.1.3. Conditional control flow	207
8.1.4. Blocks with State Variables	208
8.1.5. Branch Syntax with State Variables	209
8.1.6. The definition of subsystem	211
8.1.7. The definition of a dictionary	211
8.1.8. Signal	211
8.1.9. Parameter	212
8.1.10. Signal label and signal name	212
8.1.11. Control Characters	212
8.1.12. Commentary vector signals/path signal	212
8.1.13. Boolean type and boolean value	213
8.1.14. On enumerated types	213
8.2. Stateflow terminology commentary	215
8.2.1. Operators available for Stateflow	215
8.2.2. Transition line condition, condition action, transition action	216
8.2.3. State Actions and Action Types	216
8.2.4. State Transition and Flow Chart	217
8.2.5. Backtrack	218
8.2.6. Note on flowchart outside state	219
8.2.7. How to use custom C code	221
8.3. Initialization	222
8.3.1. Initial value setting in initialization	222
8.3.2. List of blocks that have internal initialization values	223
8.3.3. Initial values of signals registered in the the data dictionary	223
8.3.4. Example of a block where the external input value is the initial value	225
8.3.5. Initial value settings in a system configuration that would enable initialization parameters	225
8.4. Supplement: Commentary on functions	227
8.4.1. About Atomic Subsystem	227
9.	Determining guideline operation rules	230
9.1. Necessity of process definition	230
9.2. A version of MATLAB/Simulink	230
9.3. MATLAB/Simulink setting	230
9.4. Usable blocks	230
9.5. Setting of the configuration to be used	231
9.5.1. Optimization parameters	231
9.5.2. Other configurations	231
9.5.3. Configuration settings	231
9.6. Guideline rules that are used	232
9.6.1. The adoption of the guideline rule and the setting of the process	232
9.6.2. The setting of the guideline rule application field and the clarification of the exclusion condition	232
9.6.3. The decision on the parameter that is stipulated in the guideline	233
9.6.4. Guideline checker adoption process determination	233
9.6.5. Addition of the model analysis process	233
9.6.6. Rule alteration procedure	233
9.6.7. Arrangement of development environment	233
10.	Model Architecture Explanation	235
10.1. The roles of Simulink and Stateflow	235
10.2. Hierarchical structure of a controller model	237
10.2.1. Types of hierarchies	237
10.2.2. Layout method for top layer	237
10.2.3. : Modeling method for function layers and sub-function layers.	238
10.2.4. Modeling method for schedule layers	238
10.2.5. Modeling method for control flow layers	239
10.2.6. Modeling method for selection layers	240
10.2.7. Modeling method for data flow layers	241
10.2.8. Relation between embedded implementation and Simulink models	242
10.3. AUTOSAR Concept	242
10.3.1. What is the AUTOSAR software platform concept?	242
10.3.2. RCP and AUTOSAR software platform	243
10.4. Single-task and multi-task	243
10.4.1. Single-task	243
10.4.2. Multi-task	245
10.4.3. Effect of connecting subsystems with sampling differences	245
11.	Simple checking sample program for guidelines	247
11.1. Check by automatic setting	247
11.1.1. na_0004: Simulink model appearance settings	247
11.1.2. db_0043: Model font and font size	247
11.1.3. na_0001: Bitwise Stateflow operators	248
12.	Update history	249
12.1. Termination rule	249
12.1.1. Removed in version 2.2	249
12.1.2. Removed in version 3.0	249
12.1.3. Removed in version 3.1	249
12.1.4. Removed in version 4.0	249
12.1.5. Moved to attachment in version 4.0	250
12.2. The flow of the style guideline revision	250
[bookmark: _Toc381884962][bookmark: _Toc381951828][bookmark: _Toc383798611][bookmark: _Toc420056290][bookmark: _Toc359428400]Introduction
[bookmark: _Toc381884963][bookmark: _Toc381951829][bookmark: _Toc383798612][bookmark: _Toc420056291]Purpose of these Guidelines
These guidelines stipulate important basic rules for describing Simulink / Stateflow models to allow for a simple, common understanding by authors and users in operating automotive control system of control models.
They were created with the following main objectives.
· Readability
· Improvement of graphical understandability
· Improvement of readability of functional analysis.
· Prevention of connection mistake
· Comments and so on
· Simulation and verification
· System to enable simulation
· Easy testing
· Code generation
· Improvement of efficiency of generation code.(ROM,RAM efficiency)
· Securement of robustness of a generation code
· Others

[bookmark: _Toc381884964][bookmark: _Toc381951830][bookmark: _Toc383798613][bookmark: _Toc420056292][bookmark: _Toc359428402]Guideline template
Guideline descriptions are documented using the following template. Use of this template is also recommended when creating original guidelines.
	ID: Title
	XX_nnnn: Title of the guideline (unique, short)

	Priority
	One of Mandatory / Strongly Recommended / recommended.

	Scope
	MAAB / NAMAAB / JMAAB / company name (if adding company rules)

	MATLAB
Version
	ALL
RX, RY, RZ
RX and later
RX and earlier
RX through RY

	Prerequisites
	Links to guidelines, which are prerequisite to this guideline (ID + Title)

	Description
	Description of the guideline (text, images).

	Notes
	Notes, footnotes.

	See also
	ID including other helpful guidelines.

	Last Change
	Version number of the Last Change.

Note: This template lists the minimum requirements for a correct understanding of a guideline. New items may be added to the template as long as they do not duplicate any of the existing items.
[bookmark: _Toc384821293][bookmark: _Toc385599968][bookmark: _Toc386095572][bookmark: _Toc388358534][bookmark: _Toc388358917][bookmark: _Toc388443592][bookmark: _Toc388443975][bookmark: _Toc388444358][bookmark: _Toc388444740][bookmark: _Toc384821326][bookmark: _Toc385600001][bookmark: _Toc386095605][bookmark: _Toc388358567][bookmark: _Toc388358950][bookmark: _Toc388443625][bookmark: _Toc388444008][bookmark: _Toc388444391][bookmark: _Toc388444773][bookmark: _Toc362009905][bookmark: _Toc362010325][bookmark: _Toc362020620][bookmark: _Toc362344396][bookmark: _Toc362377240][bookmark: _Toc362009906][bookmark: _Toc362010326][bookmark: _Toc362020621][bookmark: _Toc362344397][bookmark: _Toc362377241][bookmark: _Toc381884965][bookmark: _Toc381951831][bookmark: _Toc383798614][bookmark: _Toc420056293][bookmark: _Toc359428403]ID
An ID consists of 2 lower case letters (identifying the guideline author) and a 4 digit number, separated by an underscore. An ID is permanent and cannot be changed, and is used when referring to a guideline.
db, jm, hd, ar are IDs used by established members for Ver1.0. na, jp, jc, jt are IDs used from Ver2.0 onwards.
Please use letter combinations other than these as ID when adding your own guidelines.

Parenthesized rules, (ID), are rules that have been changed from rules to a document description.
These document description rules have, like other document descriptions, no priority or scope classification. They describe valuable approaches, examples for the creation of models. They have no rules that must be specifically adhered to, or counterexamples, but describe a particular approach or helpful tips.
[bookmark: _Toc381884966][bookmark: _Toc381951832][bookmark: _Toc383798615][bookmark: _Toc420056294]Title
The Title is unique and is a brief description of the guidelines.
[bookmark: _Toc381884967][bookmark: _Toc381951833][bookmark: _Toc383798616][bookmark: _Toc420056295]Priority
The priority level is classified as "Mandatory", "Strongly Recommended", and "Recommended". Priority does not only indicate the importance of the guideline, but also considers the gravity of the potential results if they are violated.
	Mandatory
	Strongly
Recommended
	Recommended

	DEFINITION

	· Guidelines that all companies agree to that are absolutely essential
· Guidelines that all companies conform to 100%

	· Guidelines that are agreed upon to be a good practice, but legacy models preclude a company from conforming to the guideline 100%
· Models should conform to these guidelines to the greatest extent possible; however 100% compliance is not required
	· Guidelines that are recommended to improve the appearance of the model diagram, but are not critical to running the model
· Guidelines where conformance is preferred, but not required

	CONSEQUENCES
If the guideline is violated

	· Essential items are missing
· The model might not work properly

	· The quality and the appearance deteriorates
· There may be an adverse effect on maintainability, portability, and reusability
	· The appearance will not conform with other projects

	WAIVER POLICY
If the guideline is intentionally ignored,

	· The reasons must be documented
	
	

[bookmark: _Toc381884968][bookmark: _Toc381951834][bookmark: _Toc383798617][bookmark: _Toc420056296]Scope :
The scope of a guidelines is set to one of the following:
· MAAB: Guideline that has been agreed by JMAAB and NAMAAB.
· JMAAB: Guideline that has been agreed by the Japan MBD Automotive Advisory Board alone.
· NAMAAB: Guideline that has been agreed by the North America MATLAB Automotive Advisory Board alone.
MAAB includes the subgroups JMAAB and NAMAAB.
"JMAAB" is a subgroup including automotive manufacturers and suppliers in Japan.
"NAMAAB" is a subgroup including automotive manufacturers and suppliers in the United States and Europe.

[bookmark: _Toc381884969][bookmark: _Toc381951835][bookmark: _Toc383798618][bookmark: _Toc420056297]MATLAB version
The guidelines support all MATLAB versions, but some guidelines only support specific versions. The version information is given in one of the following 5 formats.
· ALL: all MATLAB versions.
· RX, RY, RZ: specific MATLAB versions.
· before RX: MATLAB versions before RX.
· after RX: MATLAB versions after RX.
· RX through RY: MATLAB versions for RX through RY.
Ver4.0 contains rules for R2008b through R2013a.
[bookmark: _Toc381884970][bookmark: _Toc381951836][bookmark: _Toc383798619][bookmark: _Toc420056298]Prerequisites
The Prerequisites entry gives the ID and Title for the guidelines that are prerequisite to this guideline.

[bookmark: _Toc381884971][bookmark: _Toc381951837][bookmark: _Toc383798620][bookmark: _Toc420056299]Description
The Description describes the content in detail, using figures and tables.
[bookmark: _Toc381884972][bookmark: _Toc381951838][bookmark: _Toc383798621][bookmark: _Toc420056300]See Also
This field contains guideline IDs of other helpful guidelines.
Apart from the MAAB guidelines, the following guidelines are referred to.
· Modeling Guidelines for Code Generation(cgsl_)
· Modeling Guidelines for High-Integrity Systems(hisl_)
· NASA Orion Style Guidelines numbers from Orion GN&C MATLAB/Simulink Standards(Orion_[bn_,ek_,im_,jr_,jh])Ver3.0 are added as related references.
http: //www.mathworks.co.jp/aerospace-defense/standards/nasa.html
· MISRA SLSF Guidelines (MISRA AC SLSF_)
From Ver4.0, MISRA AC SLSF Guidelines, published by MISRA, are added as related references.

The content contained in these guidelines are not included in the text of this document.
The content of these guidelines and the content in the guidelines listed above may vary.
The ultimately correct rules are the MAAB rules, describing the required rules for controller modeling.
They do not correspond to all numbers for the guidelines listed above.
[bookmark: _Toc381884973][bookmark: _Toc381951839][bookmark: _Toc383798622][bookmark: _Toc420056301]Last Change
This field contains the version number for the Last Change.
However, a version number is not changed for simply printing error corrections or additional explanations.
It lists a modified version which includes changes to the intention of rules, changes in conditions or additional conditions.

[bookmark: _Toc381884974][bookmark: _Toc381951840][bookmark: _Toc383798623][bookmark: _Toc420056302]Organization of these Guidelines
Explanation of this document is described in chapter 1.
 Rules are described in from chapter 2 to chapter 6.
Where rules for prohibited use and limited or restricted use with regard to specific blocks or functions conflict, list the rules for prohibited use first. Then list the rules for limited use.
1． Prohibited use rule 									:		 Recommended
2． Limited / restricted use rule		:		 Strongly Recommended (or Mandatory)
This explanation concerns the listing order. Investigate the adoption of these two rules for the operation procedures.

Rationals of rules establishment and adjustable parameters of rules are listed in chapter 7.
Of the term as for 8 chapters for beginners comment.
Chapters 9 to 11 the model architecture and operation required by advanced users .
Change history of these guidelines is described in chapter 12.	

1
© Copyright 2007JMAAB. All rights reserved.
[bookmark: _Toc381884975][bookmark: _Toc381951841][bookmark: _Toc383798624][bookmark: _Toc420056303][bookmark: _Toc359428430]Naming Conventions
[bookmark: _Toc381884976][bookmark: _Toc381951842][bookmark: _Toc383798625][bookmark: _Toc420056304]Naming Conventions - Overall summary
[bookmark: _Toc381884977][bookmark: _Toc381951843][bookmark: _Toc383798626][bookmark: _Toc420056305]Rule IDs for characters that can be used in names
Character restrictions and characters that can be used in names are described in the following rules.
ar_0001: Usable characters for file names	
ar_0002: Usable characters for folder names	
jc_0201: Usable characters for Subsystem name	
jc_0211: Usable characters for Inport block and Outport block	
jc_0222: Usable characters for signal line and bus names	
jc_0232: Usable characters for parameter names	
jc_0231: Usable characters for block names	
[bookmark: _Toc381884978][bookmark: _Toc381951844][bookmark: _Toc383798627][bookmark: _Toc420056306]Rule IDs for character length
Limitations relating to the length of name lengths are described in the following rules.
jc_0241: Length restrictions for file names	
jc_0242: Length restrictions for folder names	
jc_0243: Length restrictions for Subsystem names	
jc_0244: Length restrictions for Inport and Outport names	
jc_0245: Length restrictions for signal and bus names	
jc_0246: Length restrictions for parameter names	
jc_0247: Length restrictions for block names	
[bookmark: _Toc381884979][bookmark: _Toc381951845][bookmark: _Toc383798628][bookmark: _Toc420056307]List of naming rule constraints "character type / character length"
	Availability for use by character type
	File name, folder
	Subsystem the code is generated for, Inport/Outport, signal name, bus name, parameter name
	Other blocks

	single-byte alphabetic character
	○
	○
	○

	single-byte numerical character
	○ not allowed as the first character, otherwise allowed

	single-byte underscore
	○　not allowed for first or last character, no two underscores in succession

	single-byte space
	not allowed
	○
not allowed for first or last character, no two spaces in succession

	line break
	not allowed

	

	other characters
(local language)
	×
	×
	×

	Length limitations
	File name,
folder name
	Subsystem the code is generated for, Inport/Outport, signal name, bus name, parameter name
	Other blocks

	character length
	3 to 63 characters (example)
	～63 characters

[bookmark: _Toc332031678]
[bookmark: _Toc381884980][bookmark: _Toc381951846][bookmark: _Toc383798629][bookmark: _Toc420056308][bookmark: _Toc359428435]General Rules
[bookmark: _Toc381884981][bookmark: _Toc381951847][bookmark: _Toc383798630][bookmark: _Toc420056309]ar_0001: Usable characters for file names
	ID: Title
	ar_0001: Usable characters for file names

	Priority
	Mandatory

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	File names are subject to the following constraints.
Subject of Applications
Please operate by determining extention to be subject of application of the rules.
When application of this rule is limited to model names, the 2 types are [mdl] and [slx]

Valid form
filename = name.extension
· name: may not start with a numerical character, no spaces,no any MATLAB Keywords.
· extension: no spaces

Uniqueness
· None of the file names in a new project folder may be duplicates.
There may be no identically named models, including in subfolders via a MATLAB path.
Usable characters
Name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _
Extension: (Extensions are determined individually for used tools.)
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9

Underscores
Name:
· Underscores may be used to separate words
· Underscores may not be used in succession
· Underscores may not be used as the first character
· Underscores may not be used as the last character
Extension: (Extensions are determined individually for used tools.)
Underscores may not be used

	Notes
	Occasions when both test1.slx and test1.m exist.
When running test1 by command line, test1.m is not run and the test1.slx model file can open. In other words, constants described in test1.m cannot be loaded into the MATLAB workspace.

If there are model files with identical names in a folder without a path, please use switching the path according to operation.

	Last Change
	V4.0

[bookmark: _Toc381884982][bookmark: _Toc381951848][bookmark: _Toc383798631][bookmark: _Toc420056310][bookmark: _Toc359428437]ar_0002: Usable characters for folder names
	ID: Title
	ar_0002: Usable characters for folder names

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	A folder name conforms to the following constraints:

Valid form
directory name =name
name: may not start with a numerical character, no spaces

Usable characters
name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _
Underscores
name:
· can use underscores to separate words
· cannot have more than one consecutive underscore
· cannot start with an underscore
· cannot end with an underscore

	Notes
	There is no problem even if same folder names are included into path.. (No need of identity.)
As of R2013b, even if local language is used in folder name, C source code can be generated.

	Last Change
	V4.0

[bookmark: _Toc383772384][bookmark: _Toc383792977][bookmark: _Toc383798632][bookmark: _jc_0201:_Usable_characters][bookmark: _Toc381884983][bookmark: _Toc381951849][bookmark: _Toc383798678][bookmark: _Toc420056311][bookmark: _Toc359428438]jc_0241: Length restrictions for file names
	ID: Title
	jc_0241: Length restrictions for file names

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	File names should be made up of 3 to 63 characters (not including dots and extension).

	Notes
	Past versions limited the number of characters to 63 for model referencing.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383772431][bookmark: _Toc383793024][bookmark: _Toc383798679][bookmark: _Toc381884984][bookmark: _Toc381951850][bookmark: _Toc383798710][bookmark: _Toc420056312][bookmark: _Toc359428439]jc_0242: Length restrictions for folder names
	ID: Title
	jc_0242: Length restrictions for folder names

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Folder names on every level of a model should be made up of 3 to 63 characters.

	Notes
	It is better to restrict the overall number of folder characters (full path name).
Long full path names may lead to problems such as incomplete display of the path name in the GUI that is used for the project.

	Last Change
	V4.0

[bookmark: _Toc381884985][bookmark: _Toc381951851][bookmark: _Toc383798711][bookmark: _Toc420056313][bookmark: _Toc359428440]Internal model rules
[bookmark: _Toc381884986][bookmark: _Toc381951852][bookmark: _Toc383798712][bookmark: _Toc420056314]jc_0201: Usable characters for Subsystem names
	ID: Title
	jc_0201: Usable characters for Subsystem names

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	The names of all subsystem blocks should conform to the following constraints:
Valid form
name:
· should not start with a number
· should not have blank spaces
· should not have carriage returns
Usable characters
name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _
Underscores
name:
· can be used to separate words
· cannot have more than one consecutive underscore
· cannot start with an underscore
· cannot end with an underscore

	Notes
	Subsystems subject to this are subsystems subject to code generation.
Subsystems (Model-Wide Utilities/Model Info etc.) that have no Input/Output ports are classified in the annotations, and therefore not subject to this rule.
Also check whether function names for code generation will be subject to this rule.

	Last Change
	V2.2

[bookmark: _Toc383772465][bookmark: _Toc383793058][bookmark: _Toc383798713][bookmark: _Toc383772466][bookmark: _Toc383793059][bookmark: _Toc383798714][bookmark: _Toc381884987][bookmark: _Toc381951853][bookmark: _Toc383798763][bookmark: _Toc420056315][bookmark: _Toc359428442]jc_0211: Usable characters for Inport block and Outport block
	ID: Title
	jc_0211: Usable characters for Inport block and Outport block

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	The names of all Inport blocks and Outport blocks should conform to the following constraints:
Valid form
name:
· may not start with a numerical character
· no spaces
· may not include line breaks
Usable characters
name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _
Underscores
name:
· Underscores may be used to separate words
· Underscores may not be used in succession
· Underscores may not be used as the first character
· Underscores may not be used as the last character

	Last Change
	V2.2

[bookmark: _Toc383772516][bookmark: _Toc383793109][bookmark: _Toc383798764][bookmark: _Toc383772556][bookmark: _Toc383793149][bookmark: _Toc383798804][bookmark: _Toc381884988][bookmark: _Toc381951854][bookmark: _Toc383798805][bookmark: _Toc420056316][bookmark: OLE_LINK3][bookmark: _Toc359428443]jc_0222: Usable characters for signal line and bus names
	ID: Title
	jc_0222: Usable characters for signal line and bus names

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Indicates the constraints on signals with a name.
Valid form
name:
· may not start with a numerical character
· no spaces
· no control characters
· may not include line breaks
Usable characters
name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _
Underscores
name:
· Underscores may be used to separate words
· Underscores may not be used in succession
· Underscores may not be used as the first character
· Underscores may not be used as the last character

	Notes
	The naming convention for signal lines does not differentiate between signal line type (scalars, vectors, busses).

	Last Change
	V4.0

[bookmark: _Toc383772558][bookmark: _Toc383793151][bookmark: _Toc383798806][bookmark: _Toc381884989][bookmark: _Toc381951855][bookmark: _Toc383798850][bookmark: _Toc420056317][bookmark: _Toc235438642][bookmark: _Toc246228276][bookmark: _Toc294875195][bookmark: _Toc353205894][bookmark: _Toc359428444]jc_0232: Usable characters for parameter names
	ID: Title
	jc_0232: Usable characters for parameter names

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Indicates the constraints on signals with a name.
Valid form
name:
· may not start with a numerical character
· no spaces
· no control characters
· may not include line breaks
Usable characters
name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _
Underscores
name:
· Underscores may be used to separate words
· Underscores may not be used in succession
· Underscores may not be used as the first character
· Underscores may not be used as the last character

	Last Change
	V4.0

[bookmark: _Toc383772603][bookmark: _Toc383793196][bookmark: _Toc383798851][bookmark: _Toc383772644][bookmark: _Toc383793237][bookmark: _Toc383798892][bookmark: _Toc381884990][bookmark: _Toc383798893][bookmark: _Toc420056318][bookmark: _Toc359428445][bookmark: _Toc381951856]jc_0231: Usable characters for block names
	ID: Title
	jc_0231: Usable characters for block names

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	jc_0201: Usable characters for subsystem names

	Description
	All block names are subject to the following constraints.
Valid form
name:
· should not start with a number
· should not have blank spaces
· should not include double-byte characters
· can have carriage returns
Usable characters
name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

	Notes
	
This rule does not apply to subsystem blocks, Inport/Outport blocks.

	Last Change
	V2.0

[bookmark: _Toc383772646][bookmark: _Toc383793239][bookmark: _Toc383798894][bookmark: _Toc383798934][bookmark: _Toc420056319][bookmark: _Toc359428446][bookmark: _Toc153083664][bookmark: _Toc151543908][bookmark: _Toc156018049][bookmark: _Toc156895491][bookmark: _Toc160417949][bookmark: _Toc345416695][bookmark: _Toc353263282]jc_0243: Length restrictions for subsystem names
	ID: Title
	jc_0243: Length restrictions for subsystem names

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Subsystem name lengths should be 3 to 63 characters.

 (
Number of characters for subsystem name
)

 (
overall number of characters = sldemo_engine/valve timing/positive edge to dual edge conversion
)

	Notes
	It is better to restrict the overall number of characters (full path name including model name) too.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383772687][bookmark: _Toc383793280][bookmark: _Toc383798935][bookmark: _Toc383798971][bookmark: _Toc420056320][bookmark: _Toc359428447]jc_0244: Length restrictions for Inport and Outport names
	ID: Title
	jc_0244: Length restrictions for Inport and Outport names

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Port name lengths should be 3 to 63 characters.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383772724][bookmark: _Toc383793317][bookmark: _Toc383798972][bookmark: _Toc381884993][bookmark: _Toc383798999][bookmark: _Toc420056321][bookmark: _Toc359428448]jc_0245: Length restrictions for signal and bus names
	ID: Title
	jc_0245: Length restrictions for signals and bus names

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Signal and bus name lengths should be 3 to 63 characters.
 (
Signal and bus name
)

	
	Bus signals can be layered.
It is better to restrict the overall number of characters (full path).
 (
Overall number of characters.
)

 (
Overall number of characters
)

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383772752][bookmark: _Toc383793345][bookmark: _Toc383799000][bookmark: _Toc383799037][bookmark: _Toc420056322][bookmark: _Toc359428449]jc_0246: Length restrictions for parameter names
	ID: Title
	jc_0246: Length restrictions for parameter names

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Parameter name lengths should be 3 to 63 characters.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383772790][bookmark: _Toc383793383][bookmark: _Toc383799038][bookmark: _Toc383799065][bookmark: _Toc420056323][bookmark: _Toc359428450]jc_0247: Length restrictions for block names
	ID: Title
	jc_0247: Length restrictions for block names

	Priority
	recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Block name lengths should be 3-63 characters.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc359428451]
[bookmark: _Toc381884996][bookmark: _Toc383799066][bookmark: _Toc420056324]Notes on other used characters
[bookmark: _Toc381884997][bookmark: _Toc383799067][bookmark: _Toc420056325]na_0035: Adoption of naming conventions
	ID: Title
	na_0035: Adoption of naming conventions

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Adoption of a naming convention is recommended.　A naming convention provides guidance for naming blocks, signals, parameters and data types.　
Naming conventions frequently cover issues such as:

Readability:
· Use of underscores
· Use of capitalization
Encoding information:
· Use of meaningful names
· Standard abbreviations and acronyms
· Data type
· Engineering units (system of units)
· Data ownership
· Memory type

	Notes
	This is an example of a rule relating to readable capitalization.
· All-capital parameters should define storage class..
· All-capital signal (Simulink, mpt objects) names should not be used.
Names are defined for signal lines (label names), but signal line names that only have an annotative significance without defining Simulink or mpt objects, are given in all capitals to distinguish them from global signals.

Acronym is a kind of abbreviations mainly used in European languages. It is created from initial characters of compound word which consists of several words.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc384821363][bookmark: _Toc385600038][bookmark: _Toc386095642][bookmark: _Toc388358604][bookmark: _Toc388358987][bookmark: _Toc388443662][bookmark: _Toc388444045][bookmark: _Toc388444428][bookmark: _Toc388444810][bookmark: _Toc383793413][bookmark: _Toc383799068][bookmark: _Toc383793414][bookmark: _Toc383799069][bookmark: _Toc383793466][bookmark: _Toc383799121][bookmark: _Toc381884998][bookmark: _Toc383799124][bookmark: _Toc420056326][bookmark: _Toc359428455]jc_0251: Naming restrictions for signals and parameters.
	ID: Title
	jc_0251: Naming restrictions for signals and parameters.

	Priority
	Mandatory

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	There are 2 constraints on signal names and parameter names inside a model.
1. Please do not use any reserved words, function names or operator names used by MATLAB such as pi, true and false .
2. Please do not use any words reserved in MATLAB auto coding .

Even when a simulation has been run, problems may on occasions arise when automatically generating code or when integrating it.
Parameters that may not be used can be checked using iskeyword, but this function only checks the names that have been registered as MATLAB keywords. Function names and operator names cannot be checked with this function.
A number of examples is listed below, but care must be taken as there are numerous examples apart from these.
· MATLAB keywords
'break', 'case', 'catch', 'classdef', 'continue', 'else', 'elseif', 'end', 'for','function',
 'global', 'if', 'otherwise', 'parfor', 'persistent', 'return', 'spmd', 'switch', 'try',
 'while'
· Function names, constant names, operator names
'eps','Enf','intmax','intmin','NaN','pi','realmax','realmin','true','false','inf'

The following are reserved by MATLAB for auto coding.
· const、TRUE、FALSE、 infinity, nil, double, single, or, enum

	Notes
	Reserved words are defined in the Simulink Coder documentation.
http: //www.mathworks.co.jp/jp/help/symbolic/reserved-variable-and-function-names.html

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc420056327]na_0014: Use of local language in Simulink and Stateflow
	ID: Title
	na_0014: Use of local language in Simulink and Stateflow

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	The local language should be used only in descriptive fields.
Descriptive fields are text entry points that do not affect code generation or simulation. Examples of descriptive fields include the [Description] field in the Block Properties dialog box.

Simulink Example:
· The description field in the Block Properties dialog box.

· Text annotation directly entered in the model

Stateflow Example:
· The Description field in chart or state Properties

· Annotation description added using Add Note

There are also many other places in masked subsystem Disp that correspond to Description fields, such as user tags, inside block annotations and commented out subsystems.
· How to select “comment out”

	Notes
	Description fields may vary between versions.
In recent Simulink versions the use of local language is allowed for subsystem names and block names.
Both simulation and code generation are possible if only characters that allow for code generation are designated in the function setting.

 (
Set function setting beforehand
)

 (
Even if using local language for subsystem names, simulation execution and code generation are both possible.
)

	See Also
	

	Last Change
	V2.0

[bookmark: _Toc381885000][bookmark: _Toc383799126][bookmark: _Toc420056328][bookmark: _Toc359428475]Model Architecture
[bookmark: _Toc381885001][bookmark: _Toc383799127][bookmark: _Toc420056329]na_0006: Guidelines for mixed use of Simulink and Stateflow
	ID: Title
	na_0006: Guidelines for mixed use of Simulink and Stateflow

	Priority
	Strongly Recommended

	Scope
	NAMAAB

	MATLAB Version
	ALL

	Prerequisites
	

	Description
	The choice of whether to use Simulink or Stateflow to model a given portion of the control algorithm functionality should be driven by the nature of the behavior being modeled.

	Notes
	The details are this.「10.1 The roles of Simulink and Stateflow」

	Last Change
	V4.0

[bookmark: _Toc383793473][bookmark: _Toc383799128][bookmark: _Toc383793474][bookmark: _Toc383799129][bookmark: _Toc383799152][bookmark: _Toc420056330]na_0007: Guidelines for use of Flowcharts, Truth Tables and State Machines
	ID: Title
	na_0007: Guidelines for use of Flowcharts, Truth Tables and State Machines

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB Version
	ALL

	Prerequisites
	na_0006: Guidelines for Mixed use of Simulink and Stateflow

	Description
	Within Stateflow, the choice of whether to use a Flowchart or a state chart to model a given portion of the control algorithm functionality should be driven by the nature of the behavior being modeled.
· If the primary nature of the function segment is to calculate modes of operation or discrete-valued states, use state charts. Some examples are:
· Diagnostic model with pass, fail, abort, and conflict states
· Model that calculates different modes of operation for a control algorithm
· If the primary nature of the function segment involves if-then-else statements, use Flowcharts or Truth Tables.

Specifics:
If the primary nature of the function segment is to calculate modes or states, but if-then-else statements are required, add a Flowchart to a state within the state chart. (See 5.7Flow Chart foundation)

	Last Change
	V2.0

[bookmark: _Toc383793498][bookmark: _Toc383799153][bookmark: _Toc383793527][bookmark: _Toc383799182][bookmark: _Toc381885003][bookmark: _Toc383799183][bookmark: _Toc420056331]db_0143: Similar block types on the model levels
	ID: Title
	db_0143: Similar block types on the model levels

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	A structure layer(Function or Schedule layer) and data flow layer shall not be mixed at the same layer. Usable block types in the model layers should be restricted and the list of usable block types according to model layers should be prepared and agreed upon. To understand layer concept, refer 10.2　Hierarchical structure of a controller model.

However, the following blocks are not limited to a layer, and can be used on all levels.

Blocks which can be placed on every model level (blocks that can be used on all levels)
	Block types
	Examples of block icons

	Inport
	

	Outport
	

	Mux
	

	Demux
	

	Bus Selector
	

	Bus Creator
	

	Select
or
	

	Ground
	

	Terminator
	

	From
	

	Goto
	

	Merge
	

	Unit Delay(1)
	

	Rate Transition
	

	Data Type Conversion
	

	Data Store Memory
	

	If
	

	Case
	

	Function-Call Generator
	

	Function-Call Split
	

	Trigger(2)
	

	Enable(3)
	

	Action port(4)
	

	Notes
	4) Not only the Unit Delay block but all similar blocks like the Delay block are treated in the same manner.
2) In R2011a and earlier, Enable block is not allowed at the root level of the model.
3) In R2008b and earlier, Trigger block is not allowed at the root level of the model.
Note: If the Trigger or Enable blocks are placed at the root level of the model, then the model will not simulate in a standalone mode. The model must be referenced using the Model block.
4) Action port is allowed at the root level of the model.
Regarding kinds of laysers, please see appendix.
Establish standards for each project on whether to include libraries or virtual subsystems within the scope of "Subsystems only".

	Last Change
	V4.0

[bookmark: _Toc383793529][bookmark: _Toc383799184][bookmark: _Toc383799293][bookmark: _Toc420056332]db_0144: Use of Subsystems
	ID: Title
	db_0144: Use of Subsystems

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB Version
	ALL

	Prerequisites
	

	Description
	Blocks in a Simulink diagram should be grouped together into subsystems based on functional decomposition of the algorithm, or portion thereof, represented in the diagram.
Avoid grouping blocks into subsystems primarily for the purpose of saving space in the diagram. Each subsystem in the block diagram should represent a unit of functionality required to accomplish the purpose of the model or submodel. Blocks can also be grouped together based on behavioral variants or timing.
If creation of subsystems is required for readability issues, then a virtual subsystem should be used.

	Last Change
	V2.2

[bookmark: _Toc381885005][bookmark: _Toc383799294][bookmark: _Toc420056333]Simulink
[bookmark: _Toc381885006][bookmark: _Toc383799295][bookmark: _Toc420056334]Diagram appearance
[bookmark: _Toc381885007][bookmark: _Toc383799296][bookmark: _Toc420056335]na_0004: Simulink model appearance
	ID: Title
	na_0004: Simulink model appearance

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	The model appearance settings should conform to the following guidelines when the model is released.
	The user is free to change the settings during the development process.View Options
	Setting

	Model Browser
	unchecked

	Screen color
	white

	Status Bar
	checked

	Toolbar
	checked

	Zoom factor
	Normal (100%)

	Block Display Options
	Setting

	Background color
	white

	Foreground color
	black

	Execution Context Indicator
	unchecked

	Library Link Display
	none

	Linearization Indicators
	checked

	Model/Block I/O Mismatch
	unchecked

	Model Block version
	unchecked

	Sample Time Colors
	unchecked

	Sorted Order
	unchecked

	Signal Display Options
	Setting

	Port Data Types
	unchecked

	Signal Dimensions
	unchecked

	Storage Class
	unchecked

	Test point Indicators
	checked

	Viewer Indicators
	checked

	Wide Non-scalar Lines
	checked

	Notes
	These are an example. Please set standards for each project.

	See Also
	MISRA AC SLSF 023A

	Last Change
	V2.0

[bookmark: _Toc383793642][bookmark: _Toc383799297][bookmark: _Toc383793643][bookmark: _Toc383799298][bookmark: _Toc383793644][bookmark: _Toc383799299][bookmark: _Toc371494901][bookmark: _Toc371495365][bookmark: _Toc371496060][bookmark: _Toc371496407][bookmark: _Toc371497036][bookmark: _Toc371499811][bookmark: _Toc373138327][bookmark: _Toc373138762][bookmark: _Toc373139140][bookmark: _Toc373139519][bookmark: _Toc373236859][bookmark: _Toc373241795][bookmark: _Toc375228581][bookmark: _Toc375229386][bookmark: _Toc375230192][bookmark: _Toc375233273][bookmark: _Toc375296122][bookmark: _Toc375296559][bookmark: _Toc375296994][bookmark: _Toc375298672][bookmark: _Toc375299320][bookmark: _Toc375299755][bookmark: _Toc375558384][bookmark: _Toc383799404][bookmark: _Toc420056336][bookmark: _Toc359428479]db_0043: Simulink font and font size
	ID: Title
	db_0043: Simulink font and font size

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	All text elements (block names, block annotations and signal labels)
except text annotations within a model must have the same font style and font size.
Fonts and font size should be selected for legibility.

	Notes
	The selected font sould be directly portable (e.g. Simulink/Stateflow default font) or convertible between platforms (e.g. Arial/Helvetica 12pt).

	Last Change
	V2.0

[bookmark: _Toc383793750][bookmark: _Toc383799405][bookmark: _Toc369077370][bookmark: _Toc369078855][bookmark: _Toc369079151][bookmark: _Toc369611951][bookmark: _Toc369615814][bookmark: _Toc369619859][bookmark: _Toc369792733][bookmark: _Toc369793139][bookmark: _Toc371494935][bookmark: _Toc371495399][bookmark: _Toc371496094][bookmark: _Toc371496441][bookmark: _Toc371497070][bookmark: _Toc371499845][bookmark: _Toc373138361][bookmark: _Toc373138796][bookmark: _Toc373139174][bookmark: _Toc373139553][bookmark: _Toc373236893][bookmark: _Toc373241829][bookmark: _Toc375228615][bookmark: _Toc375229420][bookmark: _Toc375230226][bookmark: _Toc375233307][bookmark: _Toc375296156][bookmark: _Toc375296593][bookmark: _Toc375297028][bookmark: _Toc375298706][bookmark: _Toc375299354][bookmark: _Toc375299789][bookmark: _Toc375558418][bookmark: _db_0042:_Port_block_in_Simulink_mod][bookmark: _Toc383799436][bookmark: _Toc420056337][bookmark: _Toc359428480]db_0042: Port block in Simulink models	
	ID: Title
	db_0042: Port block in Simulink models

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	In a Simulink model, the ports comply with the following rules:
· Inports should be placed on the left side of the diagram, but they can be moved in to prevent signal crossings.
· Outports should be placed on the right side, but they can be moved in to prevent signal crossings.
· Duplicate Inports can be used at the subsystem level if required but should be avoided if possible.
· Duplicate Inports cannot be used at the root level.

	Correct:

	Incorrect:

Notes on the incorrect model
· Inport 2 should be moved in so it does not cross the feed back loop lines.
· Outport 1 should be moved to the right hand side of the diagram
.

	Last Change
	V2.0

[bookmark: _Toc383793782][bookmark: _Toc383799437][bookmark: _Toc383799484][bookmark: _Toc420056338][bookmark: _Toc359428484]jm_0002: Block resizing
	ID: Title
	jm_0002: Block resizing

	Priority
	Mandatory

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	All blocks in a model must be sized such that their icon is completely visible and recognizable. In particular, any text displayed (e.g. tunable parameters, filenames, equations) in the icon must be readable.
However, when it is difficult to resize subsystems with many inputs and outputs, the content of the icon should be made visible in an alternative way.

Correct:

Incorrect:

	Notes
	This guideline requires resizing of blocks with variable icons relying on option settings or blocks with variable number of inputs and outputs. However, in some cases, it may not be practical or desirable to resize the block icon of a subsystem block so that all of the input and output names within it are readable. In such cases, you may hide the names in the icon by using a mask or by hiding the names in the subsystem associated with the icon. If you do this, the signal lines coming into and out of the subsystem block should be clearly labeled in close proximity to the block.

	Last Change
	V2.0

[bookmark: _Toc383793830][bookmark: _Toc383799485][bookmark: _Toc383799524][bookmark: _Toc420056339][bookmark: _Toc359428485]db_0142: Position of block names
	ID: Title
	db_0142: Position of block names

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	If shown the name of each block should be placed below the block.

Correct:

Incorrect:

	Last Change
	V2.0

[bookmark: _Toc383793870][bookmark: _Toc383799525][bookmark: _Toc383799556][bookmark: _Toc420056340][bookmark: _Toc359428486]jc_0061: Display of block names
	ID: Title
	jc_0061: Display of block names

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	· Display block names for blocks which have a functional requirement to have the name displayed, and for blocks with names that have significance.

 Examples of blocks with function names instead of block names.

· No block names are displayed for blocks to which all of the following applies.
* Its function is understood from its appearance.
　(actual blocks are defined for each development project)
* No changes to default block names apart from the number at the end.

　Examples of blocks where names are not displayed
　

	Notes
	Through sldiagnostics (model name), the block classification and numbers used in the model that is used are known.
Based on the results of this command we can infer which blocks are well-know and which ones aren't.
In line with our own training curriculum, it would be better to display the block names for blocks whose function is not that well-known.

	See Also
	MISRA AC SLSF 026A

	Last Change
	V4.0

[bookmark: _Toc384821404][bookmark: _Toc385600079][bookmark: _Toc386095683][bookmark: _Toc388358645][bookmark: _Toc388359028][bookmark: _Toc388443703][bookmark: _Toc388444086][bookmark: _Toc388444469][bookmark: _Toc388444851][bookmark: _Toc383793902][bookmark: _Toc383799557][bookmark: _Toc383799606][bookmark: _Toc420056341][bookmark: _Toc359428487]db_0140: Display of block parameters
	ID: Title
	db_0140: Display of block parameters

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Important block parameters must be displayed.

In R2011b and later, masking basic blocks is a supported method for displaying the information. This method is allowed if the base icon is distinguishable.
Correct:
 `

Correct: Masked block
Use the display function by masking the basic block

Incorrect: Because of mask,base icon of masked block cannot be seen.

	Notes
	Displaying properties is a way to realize to show block parameters.
Necessary property information can be added on [Block Annotation] tab.
The block parameters that must be displayed will change depending on the process.
Please change the required information for each process.
The parameters considered to be important vary depending on the used Simulink version.

	See Also
	MISRA AC SLSF 026E

	Last Change
	V4.0

[bookmark: _Toc383793952][bookmark: _Toc383799607][bookmark: _Toc375558426][bookmark: _Toc375558430][bookmark: _Toc383799667][bookmark: _Toc420056342][bookmark: _Toc359428490]db_0032: Simulink signal appearance
	ID: Title
	db_0032: Simulink signal appearance

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Please adhere to the following rules for signal lines.
· Should not cross each other, if possible.
· Should bend at right angles (only use vertical and horizontal lines, do not draw them diagonally)
· Are not drawn one upon the other.
· Should not cross any blocks.
· Should not split into more than two sub lines at a single branching point (cross-shaped connections are not permitted).

	Correct:

	Incorrect:

	Notes
	Vertical line that is crossed is now get off holizontal line.

As a result, the cross, the difference of the branch is now clear.
· Should not cross each other, if possible..
· Should not split into more than two sub lines at a single branching point.
Above two rules were made because the branch and cross is hard to recognize.
You can be less restrictive in R2014a and later. Please determine whether adopt it or not based on the version you use.

	Last Change
	V2.0

[bookmark: _Toc383794013][bookmark: _Toc383799668][bookmark: _Toc383799712][bookmark: _Toc420056343][bookmark: _Toc359428491]db_0141: Signal flow in Simulink models
	ID: Title
	db_0141: Signal flow in Simulink models

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	· Signal flow in a model is from left to right. (Exception: Feedback loops)
· Sequential blocks or subsystems are arranged from left to right. (Exception: Feedback loops)
· Parallel blocks or subsystems are arranged from top to bottom.

 (
Data flow should be drawn from left to right
Signal flow should be drawn from left to right
)

	Last Change
	V2.0

[bookmark: _Toc383794058][bookmark: _Toc383799713][bookmark: _Toc383799750][bookmark: _Toc420056344][bookmark: OLE_LINK52][bookmark: OLE_LINK53][bookmark: _Toc359428492]jc_0110: Direction of block
	ID: Title
	jc_0110: Direction of block

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	db_0141: Signal flow in Simulink models

	Description
	Any blocks other than blocks with Delay blocks (e.g. Unit Delay) should not be rotated or reversed.
	Correct:

Only the Unit Delay block is reversed.

	Incorrect:

The Gain block is also reversed.

	Incorrect:

The signal flow is drawn from left to right, but the blocks are used vertically.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383794096][bookmark: _Toc383799751][bookmark: _Toc383799790][bookmark: _Toc420056345][bookmark: OLE_LINK54][bookmark: OLE_LINK55]jc_0111: Direction of Subsystem
	ID: Title
	jc_0111: Direction of Subsystem

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	jc_0110: Direction of block

	Description
	The direction of the subsystem must not be rotated or reversed.
	Correct:

	Incorrect:

	Last Change
	V2.0

[bookmark: _Toc383794136][bookmark: _Toc383799791][bookmark: _Toc383799821][bookmark: _Toc420056346][bookmark: _Toc345416672][bookmark: _Toc353263171][bookmark: _Toc359428550]jc_0653: Guidelines for avoiding algebraic loops between subsystems
	ID: Title
	jc_0653: Guidelines for avoiding algebraic loops between subsystems

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	When using Delay blocks (e.g. Unit Delay blocks) with the purpose of preventing algebraic loops in feedback loops across subsystems, they must be placed on the outside of the subsystem.
Rationale:
· If a Delay block is placed inside a subsystem, it is difficult to know where it has been placed, and the Delay may be duplicated. Placing it on the outside makes it explicit.
· Delay blocks inside a subsystem decrease its reusability.
· Inspection times will be longer due to the dependence on past values.
Correct:
The Delay block is placed outside the subsystem

Incorrect:
The Delay block is placed inside the subsystem

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383794167][bookmark: _Toc383799822][bookmark: _Toc383799860][bookmark: _Toc420056347]jc_0171: Maintaining signal flow when using Goto and From blocks
	ID: Title
	jc_0171: Maintaining signal flow when using Goto and From blocks

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Visual depiction of signal flow must be maintained between subsystems.
· Use of Goto and From blocks is allowed in the following cases:
· At least one signal line is used between connected systems.
· Subsystems connected in a feed-forward and feedback loop have at least one signal line for each direction.
	Correct:

	Incorrect:

	Notes
	This rule is to visually clarify the connection between subsystems.
Using Goto and From blocks to create buses or connect inputs to merge blocks are exceptions to this rule.

	Last Change
	V4.0

	
	Rule for bus added by NAMAAB is unclear. Since this rule mentions about connection between subsystems, bus has no relation.

[bookmark: _Toc383794206][bookmark: _Toc383799861][bookmark: _Toc383794246][bookmark: _Toc383799901][bookmark: _Toc375558442][bookmark: _Toc383799905][bookmark: _Toc420056348][bookmark: _Toc345416698][bookmark: _Toc353263285][bookmark: _Toc359428494]jc_0602: Consistency in model element names
	ID: Title
	jc_0602: Consistency in model element names

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	db_0042: Port block in Simulink models
na_0005: Display of Inport and Outport block names
db_0123: Stateflow port names

	Description
	Names (characters) for the following model elements directly connected to the same signal should be consistent.
· Inport block: block name (if the block name is displayed)
· Outport block: block name (if the block name is displayed)
· Goto block: tag name (not the block name)
· From block: tag name (not the block name)
· Signal line: signal name (including legacy signal names)
· Subsystem: masked port label names (if the port name is visible from above)
Label name when the port is displaying the label name
· Inport, Outport prioritize rule na_0005.
However, for signals connected to the following subsystems, the connected boundaries are regarded as an exception.
· Subsystems linked to a library
· Reusable subsystems

	Notes
	If a combination of Inport blocks, Outport blocks and other blocks has the same block name, use a suffix or prefix for the Inport and Outport blocks.
Often used suffixes and prefixes are "in" for Inport blocks and "out" for Outport blocks. Any prefix or suffix can be used for ports, but consistent prefixes must be selected.

	See Also
	MISRA AC SLSF 036-C

	Last Change
	V4.0

[bookmark: _Toc383794251][bookmark: _Toc383799906][bookmark: _Toc383799952][bookmark: _Toc420056349][bookmark: _Toc359428495]db_0146: Triggered, enabled, conditional Subsystems
	ID: Title
	db_0146: Triggered, enabled, conditional Subsystems

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Conditional input blocks should be located at the tope of the subsystem.
1.Conditional input blocks
· Enable
· For Iterator
· Action Port
· Switch Case Action
· Trigger
· While Iterator
Following blocks also should be uniformely located.
2.Blocks treated as nealy same as conditional input blocks.
· For Each
· For Iterator

Correct:

Incorrect:

	Notes
	· This guideline intends to improve readability by unifying outer shape of subsystem and internal location. Regarding For Each block, For Iterator block and While Iterator block, locations should be unified. However, regarding While Iterator block, it should be careful since it is difficult to fix the location.
· It is necessary to clarify the positions, when the model information of jc_0603 is described.

	Last Change
	V4.0

[bookmark: _Toc383794298][bookmark: _Toc383799953][bookmark: _db_0140:_Display_of_block_parameter][bookmark: _Toc364675974][bookmark: _Toc364676413][bookmark: _Toc364676851][bookmark: _Toc364677289][bookmark: _Toc364677727][bookmark: _Toc364678164][bookmark: _Toc364762513][bookmark: _Toc364762950][bookmark: _Toc364763386][bookmark: _Toc364763822][bookmark: _Toc364764257][bookmark: _Toc364764693][bookmark: _Toc364766717][bookmark: _Toc364775408][bookmark: _Toc364775877][bookmark: _Toc364776314][bookmark: _Toc364864667][bookmark: _Toc364865590][bookmark: _Toc364866024][bookmark: _Toc364866459][bookmark: _Toc364866893][bookmark: _Toc364934875][bookmark: _Toc364937032][bookmark: _Toc365277130][bookmark: _Toc365298660][bookmark: _Toc365303996][bookmark: _Toc365304739][bookmark: _Toc365361783][bookmark: _Toc365539634][bookmark: _Toc366143169][bookmark: _Toc366769964][bookmark: _Toc366771531][bookmark: _Toc383800003][bookmark: _Toc420056350]jc_0281: Naming of Trigger Port block and Enable Port block
	ID: Title
	jc_0281: Naming of Trigger Port block and Enable Port block

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	For conditional subsystems including conditional input blocks such as Trigger Port blocks,
the effect of the signal that triggers the subsystem is recorded both in the source and the destination.

At the source, names that indicate the effect are given to either of the following:
· Block name
· Subsystem's block name（Part）
· Signal name
At the destination, these names are added to either of the following:
· Block name of the conditional input block (Trigger, Enable Port)
· Part of the subsystem name of the conditional subsystem

Correct: example of a matching block name at the source and block name of the conditional input block at the destination.

Correct: example of a matching signal name and suffix for the connected subsystem.

Exception:
· In the case of library blocks that encapsulate generic functionality or reusable subsystems, generic names for the signal should be used.

	Notes
	The purpose of this rule is to improve readability while also considering the prevention of connection errors where the automatic checker is checking for connection errors.
A simple name inheritance rule that can be generally interpreted should be established for the purpose of automatic checks by the checker.

	See Also
	MISRA AC SLSF 026C

	Last Change
	V4.0

[bookmark: _Toc383794349][bookmark: _Toc383800004][bookmark: _Toc383800064][bookmark: _Toc420056351][bookmark: _Toc353265988][bookmark: _Toc359428497]jc_0603: Model description
	ID: Title
	jc_0603: Model description

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Description
	Define functional units where a model description will be added, and supply a model description for each functional unit using annotations or ModelInfo blocks.
Use a common format for the model description in the entire model.
For instance, use explicitly understood fixed headings (e.g. "Requirements", "Summary").

Example:

	Notes
	Use the example above to determine the notation, placement and headings for the description.

	See Also
	MISRA AC SLSF 022

	Last Change
	V4.0

[bookmark: _Toc383794410][bookmark: _Toc383800065][bookmark: _Toc383800097][bookmark: _Toc420056352][bookmark: _Toc353265989][bookmark: _Toc359428498]jc_0604: Block shading
	ID: Title
	jc_0604: Block shading

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Description
	Block shading should not be used to show that signal lines are not connected, except in the following cases:
· Subsystems without an Output Port
· Subsystems with displayed signal name

	Correct:

	Incorrect:

	Notes
	If the signal name is noted in the subsystem, it is explicit that it has an Output Port.
As it will be immediately clear that it is not connected, it will not fall within the restrictions of this rule.

	See Also
	MISRA AC SLSF 024A

	Last Change
	V4.0

57
© Copyright 2013JMAAB. All rights reserved.
[bookmark: _Toc381885025][bookmark: _Toc383800098][bookmark: _Toc420056353]Signals
[bookmark: _Toc381885026][bookmark: _Toc383800099][bookmark: _Toc420056354]na_0010: Grouping data flows into signals
	ID: Title
	na_0010: Grouping data flows into signals

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB Version
	ALL

	Prerequisites
	

	Description
	Restrictions on use of busses and vectors
· Mux and Demux blocks must only be used in generating and decomposing vectors.
· Scalars and vectors must be used for Mux input.
· BusCreator and BusSelector must only be used in generating and decomposing busses.
· To avoid the problem of mixing Mux and busses, connect busses to bus-supported blocks.

	See Also
	MISRA AC SLSF 015A,B,C,016A,B,C,D,E

	Last Change
	V4.0

[bookmark: _Toc383794445][bookmark: _Toc383800100][bookmark: _na_0008:_Display_of][bookmark: _Toc383794446][bookmark: _Toc383800101][bookmark: _Toc373236918][bookmark: _Toc373241854][bookmark: _Toc375228640][bookmark: _Toc375229445][bookmark: _Toc375230251][bookmark: _Toc375233332][bookmark: _Toc375296181][bookmark: _Toc375296618][bookmark: _Toc375297053][bookmark: _Toc375298731][bookmark: _Toc375299379][bookmark: _Toc375299812][bookmark: _Toc375558481][bookmark: _Toc383800140][bookmark: _Toc420056355][bookmark: _Toc361156278][bookmark: _Toc357716872][bookmark: _Toc359428501]na_0008: Display of labels on signals
	ID: Title
	na_0008: Display of labels on signals

	Priority
	recommended

	Scope
	NAMAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	A label must be displayed on a signal originating from the following blocks:

· Inport block
· From block (block icon exception applies – see Note below)
· Subsystem block or Stateflow chart block (block icon exception applies)
· Bus Selector block (the tool forces this to happen)
· Demux block
· Selector block

· Data Store Read block (block icon exception applies)
· Constant block (block icon exception applies)

A label must be displayed on any signal connected to the following destination blocks (directly or by way of a basic block that performs a non transformative operation):

· Outport block
· Goto block
· Data Store Write block
· Bus Creator block
· Mux block
· Subsystem block
· Chart block

Note: Block icon exception (applicable only where called out above): If the signal label is visible in the originating block icon display, the connected signal does not need not to have the label displayed, unless the signal label is needed elsewhere due to a destination-based rule.

Correct

Incorrect

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.2

[bookmark: _Toc383794486][bookmark: _Toc383800141][bookmark: _Toc383800191][bookmark: _Toc420056356]na_0009: Entry versus propagation of signal labels
	ID: Title
	na_0009: Entry versus propagation of signal labels

	Priority
	Strongly Recommended

	Scope
	NAMAAB

	MATLAB Version
	All

	Prerequisites
	na_0008: Display of labels on signals

	Description
	If a label is present on a signal, the following rules define whether that label shall be created there (entered directly on the signal) or propagated from its true source (inherited from elsewhere in the model by using the ‘<’ character).
1. Any displayed signal label must be entered for signals that:
a. Originate from an Inport at the Root (top) Level of a model
b. Originate from a basic block that performs a transformative operation
(For the purpose of interpreting this rule only, the Bus Creator block, Mux block, and Selector block shall be considered to be included among the blocks that perform transformative operations.)
2. Any displayed signal label must be propagated for signals that:
a. Originate from an Inport block in a nested subsystem
Exception: If the nested subsystem is a library subsystem, a label may be entered on the signal coming from the Inport to accommodate reuse of the library block.
b. Originate from a basic block that performs a non-transformative operation
c. Originate from a Subsystem or Stateflow chart block
Exception: If the connection originates from the output of a library subsystem block instance, a new label may be entered on the signal to accommodate reuse of the library block.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.0

[bookmark: _Toc383794537][bookmark: _Toc383800192][bookmark: _Toc420056357][bookmark: _Toc383800248][bookmark: _Toc357716875][bookmark: _Toc359428504]jc_0008 : Definition of a Signal labels.
	ID: Title
	jc_0008 : Definition of a Signal labels.

	Priority
	recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Defines signal name to input port which is located at system top layer or signal lines which is output from important block.
· Labels has to be displayed when signal name is defined.
· Signal name needs to be input only once (to the place where signal is occurred).

An important block is a block which outputs the result which is not decided by the kind of block but is meaningful.

Correct:
Signal name is settled at necessary location, and is displayed.

Correct:
Signal name is settled at necessary location, and is displayed.

Incorrect:
Signal name is not settled.

	See Also
	MISRA AC SLSF 027C,027D,027F,027G,027I,027J

	Last Change
	V4.0

[bookmark: _Toc420056358]jc_0009 ：Propagation of signal label
	ID: Title
	jc_0009 : Propagation of signal label

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	jc_0008 : Definition of Signal labels

	Description
	If the signal name is propagated (with signal name), turn propagation signal ON, and display signal name.
When signal name is defined at different layer, signal name is displayed with propagation signal ON.
However, in the following cases, without cross the hierarchy, propagation of the signal display name is required
· Target block: Signal output from the basic block to perform a non-conversion operation
· from,goto
· Bus Creator ,Bus Selector
· Signal Specification
· Function Call Split

Propagation signal display example1: Propagation display step over the hierarchy

Propagation signal display example2: Propagation display at same hierarchy

Propagation signal display example2: Propagation display at same hierarchy

Exception to ON the display of the signal propagation
1. Subsystem inside that library and reusable function is set.
2. No signal name is set at Bus Creator outport.

In case there is a signal name at Bus Creator outport, propagation signal is ON for this signal. However, in case there is no signal name on Bus Creator outport, propagated signal is transmitted in a state in which all of the bus signal names was degraded in the past MATLAB. It is also transmitted in empty in the latest MATLAB. This case, propagation signal is not ON.

Correct
If there is signal name on Bus Creator outport, propagation should be ON.

Correct
If there is no signal name on Bus Creator outport, propagation should be OFF.

Incorrect
In case no signal name is put on Bus. (R2010b)

	Last change
	V4.0

	See also
	hisl_0013: Guideline for using the Data Store block
MISRA AC SLSF 005C

	Last change
	V4.0

[bookmark: _Toc420056359]na_0005: Port block name visibility in Simulink models
	ID: Title
	na_0005: Port block name visibility in Simulink models

	Priority
	Strongly Recommended

	Scope
	NAMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	For the display of Inport and Outport block names, select either jc_0082 or jc_0083 and apply uniformly.

However, understanding the benefits of each of the rules outlined below, they can also both be used depending on the process or the layer and subsystem type. (It is important to clearly define the rule for the separate usages)
For instance, they could be used based on rules like the following.
· When creating on the premise of RCP which extends the functionality of the model at the beginning of the process.
· In the case of Atomic Subsystem + function, jc_0082
· Virtual Subsystems allow jc_0083
· Allow use of either for Atomic Subsystem＋auto, inline.
· Implementation code stage
· Make all conform to jc_0082.
These are some examples of what is possible.

· Benefits of each rule
· jc_0082
These rules are in order to avoid connection errors in layered subsystems.
When connecting subsystems after designing functions for individual subsystems separately, this is effective in avoiding connection errors, by connecting signals and ports so that their names match.

· jc_0083
The purpose of this rule is to reduce man-hours.
The advantage of this rule becomes apparent when used for layering by building subsystems through the selection of already existing specific blocks. In this case connection errors do not occur as only a layer of existing blocks is dropped.
As the subsystem creation function has no function that automatically copies signal names to block names, unification of block names and signal names requires man hours.
Moreover, as there is the option of changing signal names in the initial stage of the process, the concern is that complying with jc_0082 will lead to errors because of an increase in subsequent hours needed for correction and correction oversights.
Also, the subsystem creation function does not have a correction function for port icon display or a function for automatically replacing block names with signal names.
Whether using jc_0082 or jc_0083, man-hours will be required for that.
For work that is done this frequently, an automatic correction function using an API should be used.

	Notes
	The following 3 rules were highly related.
· na_0005: Port block name visibility in Simulink models
· jm_0010: Inport and Outport block names
· jc_0081: Display of Inport and Outport block icons
Furthermore, 2 techniques were described in na_0005. As it was difficult to know how these techniques should be described, this rule imposes a choice of one of the two techniques, as is indicated in the old na_0005. We have then extracted 2 separate new rules, jc-0082 and jc-0083, to describe these 2 techniques separately. Rules jm_0010 and jc_0081 have been deleted as they have been combined with this rule and split between jc_0082 and jc_0083.

	See Also
	MISRA AC SLSF 036-C

	Last Change
	V4.0

[bookmark: _Toc383794594][bookmark: _Toc383800249][bookmark: _Toc383800316][bookmark: _Toc420056360]jc_0082: Display of Inport and Outport block names 1
	ID: Title
	jc_0082: Display of Inport and Outport block names 1

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Please set the port block name, the signal name and the icon name as a set.
If the Inport or the Outport block has a signal name,
· the name of the signal line connected to the Inport or the Outport should be the same as the block name.
· The Inport or the Outport block name should be displayed.
("Format", "Block name not displayed" not possible).
· "Port number" should be selected to display the icon for the Inport or Outport block name.
Signal names refer to both attaching a label name or the existence of a legacy name.
The rule above is the same for scalars, vectors and busses.

Exception:
· The rule does not need to be adhered to inside library subsystems, masked subsystems or subsystems where reusable functions have been set.
· Block names do not have to conform completely to the signal name. Please register any differences in numeric characters used for suffixes or prefixes as specific characters. Often used suffixes and prefixes are _in for Inport blocks and _out for Outport blocks. Any prefix or suffix can be used for ports, but consistent prefixes must be selected.

Correct:
Selecting a port number

Appearance of the subsystem from above

Incorrect:
"Port number and signal name" is selected for the display of the port block icon.

Incorrect:
The port block name and the signal name are different.

Incorrect:
The port block name is not displayed.

	Notes
	To match it with the checking content of the current guideline checker
na_0005 - 1 has been formulated independently.
The purpose of this rule is to avoid connection errors in layered subsystems.
Function layers in controller models sometimes connect tens of signal lines, and it is important to build a model where connection errors can be seen at one glance. It is important, when building a safe system that is an automobile, that its design allows to discover simple errors at a glance.
When this rule is applied, it is difficult to automatically judge whether all signal names or block names are correct after they have been automatically replaced.
Signal names, even when they are legacy names, cannot be automatically judged as to whether the block name may be replaced from the signal name or whether there are any connection errors.
While extracting the differing parts of the names and confirming them one by one, a decision needs to be taken on whether to employ the block name or the signal name. If either is unilaterally changed, they can be made uniform with the automation tool.

	See Also
	MISRA AC SLSF 036-C

	Last Change
	V4.0

[bookmark: _Toc383794662][bookmark: _Toc383800317][bookmark: _Toc383800381][bookmark: _Toc420056361]jc_0083: Display of Inport and Outport block names 2
	ID: Title
	jc_0083: Display of Inport and Outport block names 2

	Priority
	recommended

	Scope
	NAMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Please set the port block name, the signal name and the icon name as a set.
If the Inport or the Outport block has a signal name,
· the signal name should not be the same as the block name in the Inport or the Outport block. The block name should conform to a number of specific fixed block names.
· For instance, in value and out value Inport standardly named in Simulink
· Icon display of Inport or Outport block should select "Signal name" or "Port number and signal name".
· Block names for Inport or Outport blocks should be set to not displayed (when changing the icon display settings described above, the default setting for block name display changes to OFF, and the user does not need to perform any specific operation).
Signal names refer to both attaching a label name or the existence of a legacy name.
The rule above is the same for scalars, vectors and busses.

Exception: Names cannot be set to non-display inside library subsystem blocks.
This is used when the signal name is prioritized and no meaningful name is attached to the block name.

Correct: Use the port number and the signal name display for the icon label
The icon display for the Inport of the Outport block is selected as the signal name

Correct: The signal name display is used for the icon label

Appearance of the subsystem from above

When the "signal name" is given for the icon display, the signal name for inherited signals is given between < >, but no < > are used for signal names if a direct label has been entered. Please note that, if entering a list of signals at a bus, extremely long names will be displayed if no name is given to the bus.
Reference 1: No name given to bus

Reference 2: Name given to bus

Incorrect:
If the signal line of the Inport or Outport block has a name, the icon display only has a port number, and the block name is displayed.

Incorrect:
After using a port number and signal name display on the icon label, this has been changed to block name display for the port block.

	Notes
	Manually changing the icon display takes time and effort. Automatic correction using a Simulink API surely is desirable.
In that event, an API for automatically conforming the specifically defined port block name to signal name should also be used.

	Last Change
	V4.0

[bookmark: _Toc383794727][bookmark: _Toc383800382][bookmark: _Toc383800441][bookmark: _Toc420056362]db_0097: Position of labels for signals and busses
	ID: Title
	db_0097: Position of labels for signals and busses

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB Version
	ALL

	Prerequisites
	

	Description
	The labels must be visually associated with the corresponding signal, and not overlap other labels, signals or blocks.

Labels should be located close to the corresponding source or destination block below the signal line.

	See Also
	MISRA AC SLSF 027A

	Last Change
	V2.0

[bookmark: _Toc383794787][bookmark: _Toc383800442][bookmark: _Toc383794788][bookmark: _Toc383800443][bookmark: _Toc383800471][bookmark: _Toc420056363]db_0081: Unconnected signals, block inputs and block outputs
	ID: Title
	db_0081: Unconnected signals, block inputs and block outputs

	Priority
	Mandatory

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	A model must not include the following.
· Subsystems or basic blocks with unconnected inputs
· Subsystems or basic blocks with unconnected outputs
· Unconnected signal lines

If unconnected blocks/signal lines are required, they must conform to the following.
· Unconnected inputs should be connected to a ground block.
· Unconnected outputs should be connected to a terminator block.

Correct:

Incorrect:

	Notes
	By using addterm(‘sys’) command, Terminator blocks and Ground blocks are added to the terminal which is not connected to sys in Simulink block diagram.
By executing this operation, the model compliant to guidelines can be realized easily.
However, distinguishment of intended block or the block which is forgotten to connect becomes impossible. To enable identification of them after this operation, please add annotations near those blocks or change give identifiable names to those blocks. Or please change size of these blocks so that it is clear these blocks were intentionally added.

	Last Change
	V2.0

[bookmark: _Toc383794817][bookmark: _Toc383800472][bookmark: _Toc383800512][bookmark: _Toc420056364][bookmark: _Toc160417989][bookmark: _Toc357716876][bookmark: _Toc359428505]Use of of Blocks
[bookmark: _Toc381885035][bookmark: _Toc383800513][bookmark: _Toc420056365]na_0003: Simple logical expressions for If condition blocks
	ID: Title
	na_0003: Simple logical expressions for If condition blocks

	Priority
	Mandatory

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	A logical expression may be implemented within an If condition block instead of building it up with logical operation blocks, if the expression contains two or fewer primary expressions. A primary expression is defined as one of the following:
· An input
· A constant
· A constant parameter
· A parenthesized expression. Except for zero or 1 instances of: < , <=, >, >=, ~=, ==, ~, no operator is included. (See examples below)
Exception:
A logical expression may contain 3 or more primary expressions if both of the following are true:
· The primary expression are all inputs
· Only one type of logical operator is present
Examples of acceptable exceptions:
· u1 | u2 | u3 |u4 | u5
· u1 & u2 & u3 & u4
Examples of primary expressions:
· u1
· (u1 > 0)
· (u1 <= G)
· (u1 > U2)
· (~u1)
Examples of acceptable logical expressions:
· u1 | u2
· (u1 > 0) & (u1 < 20)
· (u1 > 0) & (u2 < u3)
· (u1 > 0) & (~u2)

Examples of unacceptable logical expressions:
	u1 & u2 | u3
	Too many primary expressions.
Two kinds of operators exist.

	u1 & (u2 | u3)
	Unacceptable operator within the primary expression.
In parenthesized expression,only relational operators can be used.

	(u1 > 0) & (u1 < 20) & (u2 > 5)
	Too many primary expressions that are not inputs.
Allowed number of primary expressions is two or less.

	(u1 > 0) & ((2*u2) > 6)
	Unacceptable operator within the primary expression
Multiplication is executed in parenthesized expression.

In these cases, the primary expression must be computed and entered outside the If Condition block.

	Last Change
	V2.2

[bookmark: _Toc381885036][bookmark: _Toc357716878][bookmark: _Toc359428507]
[bookmark: _Toc383800514][bookmark: _Toc420056366]na_0002: Appropriate implementation of fundamental logical and numerical operations
	ID: Title
	na_0002: Appropriate implementation of fundamental logical and numerical operations

	Priority
	Mandatory

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Operations must be performed using the appropriate blocks for logical and numerical operations.
1. No numerical values may be input on blocks that are awaiting logical values.
2. No logical values may be input on blocks that are awaiting numerical values.

Detailed explanation
· A logical output should not be directly connected to the inputs of blocks that process numerical inputs.
· The result of a logical expression parameter should not be processed with a numerical operator.
· This guideline for logical operations also applies to enumerated data types.

Correct:

Incorrect:

· Blocks for performing logical operations may not be used for performing numerical operations.
· A numerical output should not be connected to the inputs of blocks that process logical inputs.
Incorrect:

· Blocks for performing numerical operations may not be used for performing logical operations.
Incorrect:
Although Inputs other than logical values can be made, the Enable Port is a block that awaits logical signals for which only On/Off exists.
Product blocks perform double and double operations, but as it connects the numerical operations result to the block that awaits the logical value called Enable Port, the Product block performs the logical operation.

· Boolean should not be applied relational operation.(Boolean signal should not be compared with numerical value(0,1,～) or logical value(true, false))
· To invert boolean value, logical operation NOT should be used.

Correct: Boolean signal is inverted by using logical operation.

Correct: Boolean signal is judged by using logical operation.

Correct: Equality of a numerical value and another numerical value is judged.

Signals which are not boolean can be compared with true, false.

Incorrect: Boolean signal is compared with numerical value.

	Notes
	 “Relational Operator”, ”Compare To Constant” and “Compare To Zero”are the blocks that expect numerical input.

Although true, false tend to be considered as equal to numerical 0,1, they mean 0, other than 0. Therefore relational operator should not be applied to boolean signal.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383794860][bookmark: _Toc383800515][bookmark: _Toc383019059][bookmark: _Toc383076398][bookmark: _Toc383800593][bookmark: _Toc420056367][bookmark: _Toc357716879][bookmark: _Toc359428508]jm_0001: Prohibited Simulink standard blocks inside controllers
	ID: Title
	jm_0001: Prohibited Simulink standard blocks inside controllers

	Priority
	Mandatory

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	· Controller models must be designed from discrete blocks.
The MathWorks "Simulink Block Data Type Support" table provides a list of blocks that support code generation.
>The table will be displayed by entering the command showblockdatatypetable.
Please use the blocks that are listed as "Code generation support" in your design. Even if the blocks are subject to code generation support, do not use them for mass production code in the following cases.
· It is dependent to continuous time
· It refers to non-finite values (Inf, -Inf, NaN)
· It includes measuring code that is only suitable for rapid prototyping

· In addition to the blocks defined by the rule above, please do not use the following blocks.
· Use of the following Sources blocks is prohibited.
	Sources are not allowed:

	Sine Wave
	

	Pulse Generator
	

	Random Number
	

	Uniform Random Number
	

	Band-Limited White Noise
	

· Sources blocks that are allowed
The Sources block group is formed by blocks that can all generate code, but the blocks that can generate mass production code are limited to the following.
· Constant
· Enumerated Constant
· Ground
· Inport

· Use of the following additional blocks is prohibited.
The MAAB Style Guide does not recommend the use of the following blocks.
This list can be extended by individual companies.
	Slider Gain
	

	Manual Switch
	

	Complex to Magnitude-Angle
	

	Magnitude-Angle to Complex
	

	Complex to Real-Imag
	

	Real-Imag to Complex
	

	Polynomial
	

	MATLAB Fcn(1)
	

	Goto Tag Visibility
	

	Probe
	

	Notes
	In (1)R2011a, the block name "MATLAB Fcn" was renamed to the block name "Interpreted MATLAB Function".

	Last Change
	V2.2

[bookmark: _Toc383794939][bookmark: _Toc383800594][bookmark: _Toc381885039][bookmark: _Toc383800689][bookmark: _Toc420056368][bookmark: _Toc357716880][bookmark: _Toc359428509]hd_0001: Prohibited Simulink sinks
	ID: Title
	hd_0001: Prohibited Simulink sinks

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Controller models must be designed from discrete blocks.
	Use of the following Sink blocks is "prohibited".

	To File
	

	To Workspace
	

	Stop Simulation
	

	Notes
	Simulink Scope blocks and Display blocks can be used in the model diagram. Please consider using Simulink Signal logging and Signal and Scope Manager for data logging and reference requirements.

	Last Change
	V2.2

[bookmark: _Toc381885040][bookmark: _Toc383800690][bookmark: _Toc420056369][bookmark: _Toc357716881][bookmark: _Toc359428510]na_0011: Scope of Goto and From blocks
	ID: Title
	na_0011: Scope of Goto and From blocks

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	· Goto blocks must use local scope.

Setting tag visualization to global sometimes inhibits subsequent changes from virtual to non-virtual subsystem. Not using them inside a controller model is therefore preferable.

	Notes
	Goto and From global tags can only be used outside the Atomic Subsystem. When Goto and From are used globally, no Atomic Subsystem is present in the layers above. Case of using From Goto global tag at outside of controller for the connection of controller and plant model is not subject to this rule.
Same As jc_0161: Use of Data Store Read/Write/Memory blocks

	Last Change
	V4.0

[bookmark: _Toc381885041][bookmark: _Toc383800691][bookmark: _Toc420056370][bookmark: _Toc357716882][bookmark: _Toc359428511]jc_0141: Use of the Switch block
	ID: Title
	jc_0141: Use of the Switch block

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	The Switch block must be used under the following conditions
· The Switch condition, input 2, must be a Boolean type.
· The block parameter "Conditions for the passing through of the first input" should be set to u2~=0.
	Correct:

	Incorrect:

	Last Change
	V2.2

[bookmark: _Toc381885042][bookmark: _Toc383800692][bookmark: _Toc420056371][bookmark: _Toc357716883][bookmark: _Toc359428512]jc_0121: Use of the Sum block
	ID: Title
	jc_0121: Use of the Sum block

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	Use conditions of the Sum block
· A rectangular shape should be used.
· The size should be adjusted to ensure there is no input signal overlap.
· Use the + mark for the first input.

	Correct:

	Incorrect:
1) 2)
　　
1) When using a round shape, the input cannot use any angles other than 90 degrees, 180 degrees, and 270 degree.
2) Since the mark has overlapped, it cannot distinguish.

	Correct:

	Incorrect:

The 1st input is using the mark of －.
This spoils readability.

Circular shapes can be used for feedback loops. The following 3 conditions must be adhered to when this is used.
· Please keep the number of inputs up to 2-3.
· The inputs should be positioned at 90°, 180°, 270°.
· The output should be positioned at 0°.
Whether feedback loops are rectangular or circular, the - mark may be used for the first input.

 (
90°
)

 (
Output
) (
180°
) (
0°
)

 (
270°
)

Correct:

Other notation examples:
 (
Incorrect
) (
Correct
) (
Correct
) (
Correct
) (
Correct
) (
Correct
)

Incorrect:
When using a round shape, the input cannot use any angles other than 90 degrees, 180 degrees, and 270 degree.

	See Also
	MISRA AC SLSF 010A

	Last Change
	V4.0

[bookmark: _Toc383795038][bookmark: _Toc383800693][bookmark: _Toc383800763][bookmark: _Toc420056372][bookmark: _Toc353265983][bookmark: _Toc357716884][bookmark: _Toc359428513]jc_0610: Operator order for Product block
	ID: Title
	jc_0610: Operator order for Product block

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	If a block is set as a divisor, the first input should be multiplied (*).

Correct:
　
Incorrect:
　

	Notes
	As for jc_0121, it is assumed that the reason that there is no mention of a feedback group is that there are no cases where the return destination is directly the Product block.

	See Also
	MISRA AC SLSF 010B

	Last Change
	V4.0

[bookmark: _Toc383795109][bookmark: _Toc383800764][bookmark: _Toc383795144][bookmark: _Toc383800799][bookmark: _Toc383800802][bookmark: _Toc420056373][bookmark: _Toc345416662][bookmark: _Toc353263160][bookmark: _Toc357716885][bookmark: _Toc359428514]jc_0611: Input signal sign during product block division
	ID: Title
	jc_0611: Input signal sign during product block division

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	In the fixed-point model, if division is incorporated into the arithmetic expression, the sign is the same as the input signal type.
Correct:
The input signal sign is the same.

Incorrect:
The input signal sign is different.

	See Also
	

	Notes
	In division arithmetic, various utility functions are created when a fixed-point code is generated. While a utility function is created for each LSB, the problem of LSB precision may make it difficult to suppress the number. In addition, if the type is different, the number can easily double in size. Unification of types used can be expected to suppress the number of utility functions, to improve ROM efficiency, and to cut down on testing manhours.

	Last Change
	V4.0

[bookmark: _Toc383800803][bookmark: _Toc420056374][bookmark: _Toc357716886][bookmark: _Toc359428515]jc_0131: Use of Relational Operator block
	ID: Title
	jc_0131: Use of Relational Operator block

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	If using the relational operator for comparison of signals and constants, set the constant input to the second (bottom) input.
	Correct

	Incorrect

	Last Change
	V2.0

[bookmark: _Toc383795149][bookmark: _Toc383800804][bookmark: _Toc357716887][bookmark: _Toc359428516][bookmark: _Toc383800833][bookmark: _Toc420056375][bookmark: _Toc383795179][bookmark: _Toc383800834][bookmark: _Toc383800903][bookmark: _Toc345416656][bookmark: _Toc353263155][bookmark: _Toc357716888][bookmark: _Toc359428517][bookmark: _Toc156895540][bookmark: _Toc160417997]jc_0161: Use of Data Store Read/Write/Memory blocks
	ID: Title
	jc_0161: Use of Data Store Read/Write/Memory blocks

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Description
	· The use case of data Store Read/Write/Memory is determined.
When using it as a memory which memorizes the past value, you should use UnitDelay , Delay block, etc.
If UnitDelay is used, when readability will fall, Data Store Read/Write/Memory can be used.
Please determine the case used in a project and use the use part of Data Store Read/Write/Memory, limiting.
· Arrangement of Data Store Read Memory
To explicitly show the Read and Write scope, position the DSM block in as low a layer as possible.
Do not position the DSM in the top layer for no reason

· diagnosis
If using between subsystems running at different rates, set diagnosis, data validity, and multitask store as errors for use.

	Notes
	Object block
	Data Store Read
	
	Data Store Write
	
	Data Store Memory
	

Know-how for improving readability
If Read and Write are positioned in differing subsystems, and the subsystems are not directly wired, using a Ground and Terminator to create a dummy line that directly wires the subsystems can enable visualization of the relationship from a higher level, improving readability.　
Priority order descriptions are necessary for these subsystems(and blocks). Dummy connection does not bind the turn order. Dummy connection should be drawn based on its priority.

	[Example of writing method]
 (
Turn is early.
) (
Turn is late.
)

	See Also
	hisl_0013: Guideline for using the Data Store block
MISRA AC SLSF 005C

	Last Change
	V4.0

[bookmark: _Toc420056376]Guideline for using the Logical Operator block
	ID: Title
	jc_0621: Guideline for using the Logical Operator block

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Unify the Logical Operator block icon shape to either "square" or "characteristics".
Unless there is otherwise a particular reason, set to "square".

Icon shape: Square

Icon shape: Characteristics

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383795249][bookmark: _Toc383800904][bookmark: _Toc383800937][bookmark: _Toc420056377][bookmark: _Toc359428473][bookmark: _Toc345416659][bookmark: _Toc353263157][bookmark: _Toc357716889][bookmark: _Toc359428518]jc_0011: Optimization parameters for Boolean data types
	ID: Title
	jc_0011: Optimization parameters for Boolean data types

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	na_0002: Appropriate implementation of fundamental logical and numerical operations

	Description
	The optimization parameter for Boolean signals must be enabled. In the Configuration Parameter Dialog Box, select Use Logic Signal as Boolean Data (vs double) under Simulation and Code Generation of Optimization.

	
	

	Last Change
	V2.2

[bookmark: _Toc383795283][bookmark: _Toc383800938][bookmark: _Toc383795306][bookmark: _Toc383800961][bookmark: _Toc383800967][bookmark: _Toc420056378][bookmark: _Toc357716890][bookmark: _Toc359428519]jc_0629: Fcn block use limits
	ID: Title
	jc_0629: Fcn block use limits

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The Fcn block is not used in the Controller Model for the purpose of code generation.
If using the Fcn block, use the MathOperation block within the subsystem, and build an expression.
Example

	Notes
	If using an Fcn block, it is advantageous in terms of readability because the numerical expression is displayed from the top.
If a subsystem consisting of numerical expressions only has been designed, implementing subsystem masking, and displaying the numerical expression within the disp command, makes it appear equivalent to Fcn, and improves readability from the upper layer.

	See Also
	MISRA AC SLSF 005B

	Update History
	V4.0

[bookmark: _Toc381885050][bookmark: _Toc383800968][bookmark: _Toc420056379]jc_0622: Guideline for using the Fcn block
	ID: Title
	jc_0622: Guideline for using the Fcn block

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	If using the Fcn block, always enclose in parentheses in arithmetic with priority order.
(Rather than blindly rely on the priority order, use parentheses for clarification.)
Correct:
Since there is a priority order in the Fcn block operation, parentheses are attached.

Incorrect:
Even though there is a priority order in the Fcn block operation, parentheses are not attached.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383795314][bookmark: _Toc383800969][bookmark: _Toc383801002][bookmark: _Toc420056380][bookmark: _Toc345416665][bookmark: _Toc353263164][bookmark: _Toc357716891][bookmark: _Toc359428520]jc_0626: Guideline for using the Lookup Table system block
	ID: Title
	jc_0626: Guideline for using the Lookup Table system block

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	For the lookup manual option in the Lookup Table, Lookup Table 2D, Lookup Table nD, and Lookup Table Dynamic, use "Interpolation - Use Final Value". (R2011a)
However, exclude cases when all input and output are a real number (double, single).
This rule is not merely for the purpose of preventing overflow of the Lookup Table output (if that is the purpose, use the saturation at integer overflow in the Lookup Table block), it is for the purpose of clearly defining the Lookup Table maximum and minimum values to prevent unexpected results in other operation blocks using the Lookup Table output.

■ Lookup Table block up to R2011a

■ Lookup Table R2011b and later (same as n-d Lookup Table)
Interpolation method: Prohibit 3D spline, and use linear shape.
Extrapolation method: Prohibit linear shape and 3D spline, and use clip.
Extrapolation option: Check "Use the final break point, or the final table value for input based on it".

	See Also
	

	Notes
	The options shown below usable in versions R2011a or earlier do not have upward compatibility with versions R2011b or later. As a result, in these Guidelines it is limited to "Interpolation - Use Final Value".
Option name with no upward compatibility
· Use nearest input
· Use bottom input value
· Use top input value

	Last Change
	V4.0

[bookmark: _Toc383795348][bookmark: _Toc383801003][bookmark: _Toc383801047][bookmark: _Toc420056381][bookmark: _Toc345416666][bookmark: _Toc353263165][bookmark: _Toc357716892][bookmark: _Toc359428521]jc_0627: Guideline for using the Discrete-Time Integrator block
	ID: Title
	jc_0627: Guideline for using the Discrete-Time Integrator block

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	For the Discrete-Time Integrator, set the saturation upper limit and lower limit.

If performing settings for generation of mpt.Parameter and other codes in the parameters, the data type should be set to auto.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383795393][bookmark: _Toc383801048][bookmark: _Toc383801077][bookmark: _Toc420056382][bookmark: _Toc357716893][bookmark: _Toc359428522]jc_0628: Guideline for using the Saturation Block
	ID: Title
	jc_0628: Guideline for using the Saturation block

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	For the maximum value and minimum value of Saturation or Dynamic Saturation blocks, use should be limited to to significant values within the maximum and minimum range.
If setting the type maximum and minimum for both the Saturation or Dynamic Saturation blocks, use the "Saturation at Integer Overflow" in the Data Type Conversion block.
(For details, see jc_0651)

Correct:
A significant value should be used for the Saturation limit value.

In regards to the type maximum value 63.9990234375, the Saturation upper limit value is set to a value 10 differing from the type maximum value.

Correct:
If limiting the type maximum and minimum values, use the Data Type Conversion block.

Incorrect:
In the Saturation Block, upper and lower limit processing is performed within the type maximum and minimum ranges after downcasting.

The type maximum value is set in Saturation.

	See Also
	MISRA SLSF0002A

	Last Change
	V4.0

[bookmark: _Toc383795423][bookmark: _Toc383801078][bookmark: _Toc383801124][bookmark: _Toc420056383][bookmark: _Toc345416657][bookmark: _Toc353263156]jc_0650: Block input/output data type with switching function
	ID: Title
	jc_0650: Block input/output data type with switching function

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	For blocks (Switch, Multiport Switch, Index Vector) with switching functions, use the same data type for data ports and output port.
Correct:

Incorrect:

	Notes
	Signal flow switching port is described as control port, other input ports are described as data ports.
 (
Control port
) (
Data
ports
)

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383795470][bookmark: _Toc383801125][bookmark: _Toc383801159][bookmark: _Toc420056384][bookmark: _Toc353265986][bookmark: _Toc357716894][bookmark: _Toc359428523]jc_0630: Number of data ports in Multiport Switch block
	ID: Title
	jc_0630: Number of data ports in Multiport Switch block

	Priority
	Mandatory

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Set the "data port number" in the "Multiport Switch" block" to two or more.

Correct:

Incorrect:

Correct:
If extracting index elements from the array, use the Selector block.

	See Also
	MISRA AC SLSF 013A

	Notes
	Only the Index Vector and Multiport Switch option settings differ, and both are blocks that have the same functions. If there have been multiple inputs of the vector signal, output the vector in accordance with the index number. If the number of data ports is one, it will change to a block that extracts scalar from inside the vector. If, without knowing this, the input pattern of the index portion has been reduced to just one, the block should in fact be cut back. However, if the block role has not been recognized, there is a possibility that reducing the port number will be acceptable. In this case, the intended action will not occur. To confirm whether the design intentions were intentionally prepared or unintentionally used, use the Selector block in the block that extracts any single desired element from the vector.
In addition, if extracting a specific fixed scalar from the vector, it should be considered that there is a possibility that a path should be used rather than a vector.

	Last Change
	V4.0

[bookmark: _Toc383795505][bookmark: _Toc383801160][bookmark: _Toc381885056][bookmark: _Toc383801204][bookmark: _Toc420056385][bookmark: _Toc353265987][bookmark: _Toc357716895][bookmark: _Toc359428524]jc_0631: Input of Multiport Switch block to control port
	ID: Title
	jc_0631: Input of Multiport Switch block to control port

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Set the input to the "Multiport Switch" block control port to an unsigned integer.

Usable data type
· uint8, uint16, uint32
· Enumerated data type (does not literally use negative values)
 (
Control port
) (
Data
ports
)

	Notes
	 (
Control port
) (
Data
ports
)

	See Also
	hisl_0022: Selection of index signal data type
MISRA AC SLSF 013B

	Last Change
	V4.0

[bookmark: _Toc383795550][bookmark: _Toc383801205][bookmark: _Toc383801240][bookmark: _Toc420056386][bookmark: _Toc345416663][bookmark: _Toc353263161][bookmark: _Toc357716896][bookmark: _Toc359428525]jc_0632: Default case port in Multiport Switch block
	ID: Title
	jc_0632: Default case port in Multiport Switch block

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	If the order of the Multiport Switch block data ports is "index specified", the following settings should be performed:
· Set the default case data ports to "additional data port"
· Set the default case diagnosis to "none"

	See Also
	hisl_0022: Selection of index signal data type

	Last Change
	V4.0

[bookmark: _Toc353263162][bookmark: _Toc357716897][bookmark: _Toc359428526][bookmark: OLE_LINK1][bookmark: OLE_LINK5][bookmark: OLE_LINK18]

[bookmark: _Toc357716898][bookmark: _Toc359428527][bookmark: _Toc383801241][bookmark: _Toc420056387]
 Initialization
[bookmark: _Toc371495007][bookmark: _Toc371495471][bookmark: _Toc371496166][bookmark: _Toc371496513][bookmark: _Toc371497142][bookmark: _Toc371499917][bookmark: _Toc373138433][bookmark: _Toc373138868][bookmark: _Toc373139246][bookmark: _Toc373139625][bookmark: _Toc373236998][bookmark: _Toc373241934][bookmark: _Toc375228720][bookmark: _Toc375229525][bookmark: _Toc375230331][bookmark: _Toc375233412][bookmark: _Toc375296261][bookmark: _Toc375296698][bookmark: _Toc375297133][bookmark: _Toc375298811][bookmark: _Toc375299459][bookmark: _Toc375299892][bookmark: _Toc375558560][bookmark: _Toc381885059][bookmark: _Toc383801242][bookmark: _Toc420056388][bookmark: _Toc359428545]jc_0625: Unification of descriptions of external input values as initial values
	ID: Title
	jc_0625: Unification of descriptions of external input values as initial values

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	R2011b and later

	Prerequisites
	

	Description
	For the Unit Delay, which sets external input values as the initial values, unify to any of the following:
1. Discrete/Delay (Recommended)
2. Additional Math& Discrete/Additional Discrete block group (Unit Delay External IC, etc.)
3. Own configured library
Example
1. Delay Block usage example

2. Unit Delay External IC

Excluding the Unit Delay External IC mask, the modeling is the same as the 3rd case below.

3. Own configured library

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc381885060][bookmark: _Toc383801243][bookmark: _Toc420056389]jc_0640: Detection of undefined initial output
	ID: Title
	jc_0640: Detection of undefined initial output

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	To prevent omission of the initial value setting when system configuration enabling initialized parameters is performed, enable "Specification Shortage Initialization Detection".
Select <diagnosis><data validity><specification shortage initialization detection><classic>.
And <Check undefined subsystem initial output> flag is "On"

	Notes
	While normally the initial value is not valid, if the conditions are met, it is the Outport block and Merge block that change to blocks that have the initial value.

When I meet the following conditions, there is not the need to use this rule.
・The output signal line of the Merge block has the setting of the Simulink object.
Because an initial value is set to a signal, so initial value is explicit.

	See Also
	MISRA AC SLSF 007

	Last Change
	V4.0

[bookmark: _Toc383795589][bookmark: _Toc383801244][bookmark: _Toc381885061][bookmark: _Toc383801276][bookmark: _Toc420056390]Block Parameters
[bookmark: _Toc381885062][bookmark: _Toc383801277][bookmark: _Toc420056391]db_0112: Indexing
	ID: Title
	db_0112: Indexing

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Use a consistent vector indexing method for all blocks.
When possible, use zero-based indexing to improve code efficiency.

	Notes
	If mixing the one-based and zero-based indexing, establish the operations rules, and enable understanding of which index is being used.

	See Also
	cgsl_0101: Zero-based indexing
hisl_0021: Consistent vector indexing

	Last Change
	V2.2

[bookmark: _Toc383795623][bookmark: _Toc383801278][bookmark: _Toc383795624][bookmark: _Toc383801279][bookmark: _Toc383801320][bookmark: _Toc420056392][bookmark: _Toc357716901][bookmark: _Toc359428529]db_0110: Tunable parameters in basic blocks
	ID: Title
	db_0110: Tunable parameters in basic blocks

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	To ensure that a parameter is tunable, it must be entered in a block dialog field as follows:
· Without any expression.
· Without a data type conversion.
· Without selection of rows or columns.

Correct:

Incorrect:

	Last Change
	V2.2

[bookmark: _Toc353265981][bookmark: _Toc357716902][bookmark: _Toc359428530]
[bookmark: _Toc381885068][bookmark: _Toc383801321][bookmark: _Toc420056393]jc_0645: Named constant setting
	ID: Title
	jc_0645: Named constant setting

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Block parameters that are targets of calibration should be defined as named constants.

Examples of parameters outside of calibration target:
● Iniitial value parameter 0
● Increment, decrement 1
● Gain block 1

Correct:

Incorrect:

	See Also
	MISRA AC SLSF 006B

	Last Change
	V4.0

[bookmark: _Toc383795667][bookmark: _Toc383801322][bookmark: _Toc353265982][bookmark: _Toc357716903][bookmark: _Toc359428531][bookmark: _Toc383801358][bookmark: _Toc420056394]
 jc_0641: Sample time setting
	ID: Title
	jc_0641: Sample time setting

	Priority
	Mandatory

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	All blocks with settings related to sample time in the parameters must be set so as to succeed to the input side settings.

However, the blocks below are not targeted:
· Port block
· Atomic Subsystem
· Blocks with status variables such as Unit Delay blocks and Memory blocks
· Signal conversion blocks such as DataType Conversion and Rate Transition
· Blocks that do not have external inputs such as Constant blocks

	See Also
	MISRA AC SLSF 009D

	Last Change
	V4.0

[bookmark: _Toc383795704][bookmark: _Toc383801359][bookmark: _Toc381885065][bookmark: _Toc383801392][bookmark: _Toc420056395][bookmark: _Toc345416667][bookmark: _Toc353263166][bookmark: _Toc357716904][bookmark: _Toc359428532]jc_0642: Integer rounding mode setting
	ID: Title
	jc_0642: Integer rounding mode setting

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	If "simple" is selected in Integer Rounding Mode, since it is dependent on the configuration hardware setting, it should be set together with the configuration

Set <the division rounding of configuration><hardware execution><signed integer>.

Incorrect
<the division rounding of configuration><hardware execution><signed integer> is set “Undefined”.

	Notes
	If "Division Rounding of Signed Integer" option is set to "Simplest",
automatically selects either "Rounding in Negative Infinite Direction" or "0",
and generates the most efficient code.

Effects of <the division rounding of configuration><hardware execution><signed integer> option.
"No setting" or “Undefined” (Depends on versions)
Select when the compiler action cannot be expressed in either "Zero" or "Rounding in Negative Infinite Direction", or when the action is unknown.
"Zero"
If the quotient is between two integers, the compiler selects an integer that is closer to 0 for the result.
"Rounding in Negative Infinite Direction"
If the quotient is between two integers, the compiler selects an integer that is closer to negative infinity for the result.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383795738][bookmark: _Toc383801393][bookmark: _Toc381885066][bookmark: _Toc383801447][bookmark: _Toc420056396][bookmark: _Toc345416668][bookmark: _Toc353263167][bookmark: _Toc357716905][bookmark: _Toc359428533]jc_0643: Fixed-point setting
	ID: Title
	jc_0643: Fixed-point setting

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	If the fixed-point setting is used for the data type, and "slope and bias" is selected for scaling, the bias must be set to 0

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383795793][bookmark: _Toc383801448][bookmark: _Toc383801477][bookmark: _Toc420056397][bookmark: _Toc345416669][bookmark: _Toc353263168][bookmark: _Toc357716906][bookmark: _Toc359428534]jc_0644: Guideline for type setting
	ID: Title
	jc_0644: Guideline for type setting

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	If the type is set by data object, the type is not set on the block side.
However, this excludes the following:
　・ Reusable internal part of function
　・ Data Type Conversion block
　・ Type setting by fixdt
　・ Double type, boolean type designation

	Notes
	　Set the signal name in the signal line on the model block side, and associate it with the signal object.
　　・Inport block...Data type ”auto”
　　・Outport block...Data type ”auto”
　　・Sum block...Output data type ”Inherit via back propagation”
　The type setting is performed in the data dictionary, while the storage class setting is optional.

Exceptional items
· 　Inside of reusable function
Even if all block structures are identical, difference of input/output data type leads to different C source codes and it’s not reuseable. Regarding reusable functions, data types of input/output blocks should be fixed.
· Data Type Conversion block
Purpose of Data Type Conversion is to set data type. If needed, data type is explicitly set by using this block.
· Data types set by using fixdｔ
If fixed point is selected, detailed setting is necessary since each block can have different data points. Complete control of data type by using only data object is impossible.
· double type, boolean type
Some block type needs explicit setting to boolean.Double type is generally used in plant model and RCP. It is not subject to this rule.
In some cases, embedded software uses double type. However those cases are special case. Since number of double type use must be minimized, careful setting on necessary blocks is needed.

	See Also
	

	Last Change
	V4.0

88
© Copyright 2013JMAAB. All rights reserved.

89
© Copyright 2013JMAAB. All rights reserved.
[bookmark: _Toc381885069][bookmark: _Toc383801478][bookmark: _Toc420056398][bookmark: _Toc359428536]Simulink pattern
Below is an explanation of the classic patterns often used in the Simulink model.
[bookmark: _Toc381885070][bookmark: _Toc383801479][bookmark: _Toc420056399]db_0114: Simulink patterns for If-then-else-if constructs
	ID: Title
	db_0114: Simulink patterns for If-then-else-if constructs

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The following patterns should be used for If-then-else-if constructs:
	Functionality
	Simulink pattern

	Switch Block is used
IF THEN ELSE IF construct

if (If_Condition)
{
 output_signal = If_Value;
}
else if (Else_If_Condition)
{
 output_signal = Else_If_Value;
}
else
{
 output_signal = Else_Value;
}
	

	IF THEN ELSE IF construct
using Action Subsystem

if (Fault_1_Active & Fault_2_Active)
{
 ErrMsg = SaftyCrit;
}
else if (Fault_1_Active | Fault_2_Active)
{
 ErrMsg = DriveWarn;
}
else
{
 ErrMsg = NoFaults;
}
	

	Notes
	While listed as an example explanation, If Action Subsystem is normally not used when switching the fixed value.

	Update History
	V2.0

[bookmark: _Toc383795825][bookmark: _Toc383801480][bookmark: _Toc383795826][bookmark: _Toc383801481][bookmark: _na_0012:_Use_of][bookmark: _db_0114:_Simulink_patterns][bookmark: _Toc383795827][bookmark: _Toc383801482][bookmark: _Toc383801542][bookmark: _Toc420056400][bookmark: _Toc153083717][bookmark: _Toc151543952][bookmark: _Toc156018111][bookmark: _Toc156895549][bookmark: _Toc160418004][bookmark: _Toc172703069]db_0115: Simulink patterns for case constructs
	ID: Title
	db_0115: Simulink patterns for case constructs

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The following patterns are used for case constructs:
	Function
	Simulink pattern

	Case constructs
using Switch Case Action Subsystem

switch (PRNDL_Enum)
{
case 1
 TqEstimate = ParkV;
 break;
case 2
 TqEstimae = RevV;
 break;
default
 TqEstimate = NeutralV;
 break;
}
	

	Case construct
using Multiport Switch block
 switch (Selection) {
 case 1:
 output_signal = look1_binlxpw(In2,y1,x1,3U);
 break;
 case 2:
 output_signal = look1_binlxpw(In3,y2,x2,3U);
 break;
 case 3:
 output_signal = look1_binlxpw(In4,y3,x3,3U);
 break;
 default:
 output_signal = look1_binlxpw(In5,y4,x4,3U);
 break;
 }

	

	Update History
	V4.0

	Change classifications
	Matched the Multiport Switch block example to the latest version code generation function and replace
Deleted unneeded examples

[bookmark: _Toc383795888][bookmark: _Toc383801543][bookmark: _Toc383801612][bookmark: _Toc420056401][bookmark: _Toc153083718][bookmark: _Toc151543953][bookmark: _Toc156018112][bookmark: _Toc156895550][bookmark: _Toc160418005][bookmark: _Toc172703070]db_0116: Simulink patterns for logical constructs with logical blocks
	ID: Title
	db_0116: Simulink patterns for logical constructs with logical blocks

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
		Use the following patterns for logical constructs:

	Function
	Simulink pattern

	Conjunctive normal form

	

	Disjunctive normal form

	

	Update History
	V1.0

[bookmark: _Toc383795958][bookmark: _Toc383801613][bookmark: _Toc383801649][bookmark: _Toc420056402][bookmark: _Toc153083719][bookmark: _Toc151543954][bookmark: _Toc156018113][bookmark: _Toc156895551][bookmark: _Toc160418006][bookmark: _Toc172703071]db_0117: Simulank patterns for vector signals
	ID: Title
	db_0117: Simulank patterns for vector signals

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The following patterns are used for vector signals:
	Functionality
	Simulink pattern

	Vector signal and parameter (scalar) multiplication

for (i=0; i>input_vector_size; i++) {
output_vector[i] = input_vector[i] * tunable_parameter_value;
}

(Reference: generated code of R2013b)
for (i = 0; i < input_vectorDim; i++) {
output_vector[i] = tunable_parameter_value * input_vector[i];
}
	

	Vector signal and parameter (vector) multiplication

for (i=0; i>input_vector_size; i++) {
output_vector[i] = input_vector[i] * tunable_parameter_vector[i];
}
	

	Vector signal element multiplication

output_signal = 1;
for (i=0; i>input_vector_size; i++) {
output_signal = output_signal * input_vector[i];
}
	

	Vector signal element division

output_signal = 1;
for (i=0; i>input_vector_size; i++) {
output_signal = output_signal / input_vector[i];
}
	

	Vector signal and parameter (scalar) addition

for (i=0; i>input_vector_size; i++) {
output_vector[i] = input_vector[i] + tunable_parameter_value;
}
	

	Vector signal and parameter (vector) addition

for (i=0; i>input_vector_size; i++) {
output_vector[i] = input_vector[i] + tunable_parameter_vector[i];
}
	

	Vector signal element addition

output_signal = 0;
for (i=0; i>input_vector_size; i++) {
output_signal = output_signal + input_vector[i];
}
	

	Vector signal element subtraction

output_signal = 0;
for (i=0; i>input_vector_size; i++) {
output_signal = output_signal - input_vector[i];
}
	

	Retention of minimum value/maximum value
	

	Edge detection
	

	Update History
	V1.0

[bookmark: _Toc383795995][bookmark: _Toc383801650][bookmark: _Toc383801727][bookmark: _Toc420056403][bookmark: _Toc359428540]na_0012: Use of Switch vs. If-Then-Else Action Subsystem
	ID: Title
	na_0012: Use of Switch vs. If-Then-Else Action Subsystem

	Priority
	Strongly Recommended

	Scope
	NAMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The Switch block should be used for modeling simple if-then-else structures, if the associated then and else actions involve only the assignment of constant values.

The if-then-else Action Subsystem should be used in the following cases:
· If the associated then action or else action requires complex calculations, use the if-then-else construct from within the conditional control flow for modeling. By doing so, not only the simulation efficiency, but also the generated code efficiency, will improve to the maximum limit (in basic blocks such as Table Lookup, pay attention to cases where quite complex calculations are required).

	Last Change
	V4.0

[bookmark: _Toc381885075][bookmark: _Toc383801728][bookmark: _Toc420056404][bookmark: _Toc235438696][bookmark: _Toc246228332][bookmark: _Toc294875254][bookmark: _Toc359428541]na_0028: Use of If-Then-Else Action Subsystem to replace multiple switches
	ID: Title
	na_0028: Use of If-Then-Else Action Subsystem to replace multiple switches

	Priority
	Recommended

	Scope
	NAMAAB

	MATLAB
Version
	All

	Prerequisites
	na_0012: Use of Switch vs. If-Then-Else Action Subsystem
db_0114: Simulink patterns for If-then-else-if constructs

	Description
	Frequent use of the condition bifurcation by Switch block should be avoided.
It should be operated based on a set upper limit target value. (For example, up to 3 levels)
If the target value is exceeded, in its place a conditional control flow using the If-Then-else Action Subsystem can be listed.

Incorrect: Nest is in 4 levels

Correct: With if-action Subsystem in 4th level, nest is limited to within a single level.

Incorrect: Not divided in if-action form.

In the cases where the C code limit is reflected, it can be split into Atomic Subsystem + Function Setting. In this case, there is no need to use the if-then-else Action Subsystem, but the Switch block configuration can be split partway through, and merely encapsulated in the subsystem.

Example of model with 5-level nest
Incorrect:

Correct: Description method that avoids layering of Switch nest

	Notes
	While listed as an example explanation, If Action Subsystem is normally not used in switching the fixed value
In both the Correct and Incorrect above, if the user does not add a function conversion setting, the generated C code is the same. (Confirmed in R2010b to R2013a)
This rule is not a constraint in the C code.

	See Also
	Orion_bn_0003: In place of multiple Switch, use the If-Then-Else Action Subsystem

	Last Change
	V3.0

[bookmark: _Toc383801729][bookmark: _Toc420056405][bookmark: _Toc359428542][bookmark: _Toc381885076]
jc_0658 ：Usage rules for Action Subsystem using conditional control flow
	ID: Title
	jc_0658: Usage rules for Action Subsystem using conditional control flow

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	na_0012: Use of Switch vs. If-Then-Else Action Subsystem

	Description
	If the associated all actions do not have a status variable, the If-Then-Else Action Subsystem (Conditional Subsystem) should not be used.
This rule adds strict limits to na_0012.

No status variable: Use the Switch, Multiport Switch, and Index Vector.
With status variable: The If-Then-Else Action Subsystem is usable as necessary.

However, if the Action Subsystem exists in a layered lower layer, and if the status variable exists only in the lower Action Subsystem, the upper layer Action Subsystem is not used.
For cases where a certain number of blocks or more are included in the related then Action and else Action rather than the Action Subsystem, use and list the normal subsystem and block that have a switching function (Switch, Multiport Switch, Index Vector). (Define and use the upper limit value for number of blocks.)

Correct:

Example of model with 5-level nest
Correct:
Since there is no internal state, layering using the subsystem is not performed.

Correct:
The Atomic Subsystem is used to split either side of the Switch without using Action Subsystem.

Incorrect:
Layering using an unnecessary Action Subsystem is performed.
 (
Since there is no block that has a state variable in this level, there is no need to use the Action Subsystem.
Initialization of this state variable is also executed
at the time of initialization
 of the upper layer, and executed several times
in the same cycle.
While there is no problem with the calculation result,
wasteful processes are performed.
)

If a function can be achieved even without using the Action Subsystem, then layering using the Action Subsystem is not performed.

In the Incorrect example, when the lowest level UnitDelay existing on the third level is initialized, first, the conditional subsystem initialization is executed one time on the upper first level, and then the conditional subsystem is initialized on the second level for a total of two times of initial value settings. In order not to generate unnecessary code, in levels where the state variable does not exist, it is recommended that no listing be made in conditional subsystems.

In addition, this rule does not coexist with na_0028, and becomes a selective expression rule.
Select and use either one within the model.
na_0028 is based on the concept that the model (not the code) complexity is reduced by dropping to a level. This rule is a rule for the purpose of avoiding execution of unnecessary initializations.

	Notes
	While unrelated to the regulations in this rule, the bifurcation of systems where the bifurcation condition nest has a deep structure is split by function conversions so as to lower the code bifurcation nest. For this purpose, functions before and after the Switch block are divided into respective subsystems, and function settings are performed for the Atomic Subsystem＋function. However, since there is a possibility that unintentional implementation could result in addition of unnecessary RAM, a check of trade-offs is required. Since both have their strengths and drawbacks, select a description method that matches the model.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc381885077][bookmark: _Toc383801730][bookmark: _Toc420056406][bookmark: _Toc359428543]jc_0623: Use of Memory block vs. Unit Delay block
	ID: Title
	jc_0623: Use of Memory block vs. Unit Delay block

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	· The Memory block is not used within discrete type models or subsystems.
(Use the Unit_Delay Block.)
· The Unit_Delay Block is not used within continuous type models or subsystems.
(Use the Memory Block.)

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383796076][bookmark: _Toc383801731][bookmark: _Toc383801761][bookmark: _Toc420056407][bookmark: _Toc345416660][bookmark: _Toc353263158][bookmark: _Toc359428544]jc_0624: Guideline for using the Delay block
	ID: Title
	jc_0624: Guideline for using the Delay block

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	R2011b and later

	Prerequisites
	

	Description
	· If wanting to obtain a vector signal that includes past values, rather than lining up multiple Unit Delays, the Tapped Delay block should be used.
· If wanting to obtain the oldest value only, the Delay block should be used.

Tapped Delay block example
[bookmark: OLE_LINK46]Correct:

[bookmark: OLE_LINK49][bookmark: OLE_LINK48]Incorrect:

Delay block example
Correct:

Incorrect:

	Notes
	Supplement
· The Tapped Delay and Delay blocks are set with arrays holding past values, and have improved code visibility to assist code efficiency.
· If the number of delays is frequent (for example, five or more), using the Delay block means performing settings for use of code using a cycling buffer, which can assist execution speed.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383796107][bookmark: _Toc383801762][bookmark: _Toc381885079][bookmark: _Toc383801802][bookmark: _Toc420056408][bookmark: _Toc345416670][bookmark: _Toc353263169][bookmark: _Toc359428548]jc_0651: Guideline for use when implementing cast
	ID: Title
	jc_0651: Guideline for use when implementing cast

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	jc_0628: Guideline for using the Saturation block

	Description
	If implementing down cast, it should be split with operations (addition, subtraction, multiplication, division) for other purposes.
This is virtually the same purpose as clearly listing parentheses, and clarifying the execution order.
Dividing the operations and cast can help to clarify the order of execution and up to which operation should use which data type in the block structure.
Blocks implementing down cast consist of the following three types of blocks:
1. Data Type Conversion
2. Gain: However, value is 1
3. Saturation

If there is not otherwise a particular reason, use Data Type Conversion.
Gain block is an alternative block that is often used when Data Type Conversion cannot be used due to tool constraints.
Saturation is used when implementing a saturation process and down cast in a single block. However, use of Saturation is not desirable when the saturation process is used for purposes of overflow prevention.
If using something other than Data Type Conversion, use block names or annotations to add comments for clarifying that it is a cast.

Correct:
Example of using Data Type Conversion

Perform cast, unify the internal data type, and clearly show the calculation order.
Incorrect:

All cast processes is consigned to auto code.

Correct:
Example 1: using other than Data Type Conversion

Shows that it is a cast in the Gain block name.

Correct:
Example 2: using other than Data Type Conversion

Change to a value smaller than the type constraints, and implement cast.
Use comments near Saturation to clarify the cast implementation.

Incorrect:

Since operations and cast are processed in the same block, the precision of calculations in progress cannot be confirmed. In this case, it can not see the accuracy of the calculation during during division. (Simulink automatically changes to 32bit operation. And after operation, it is restored to 16bit. Although it relies on Simulink function, It is better to set data type explicitly.)

Incorrect:

While there is an exclusive Gain block for cast, it is not clearly understood that its purpose is cast.

	Notes
	Although Correct and Incorrect both depend on the configuration setting, since virtually the same code can be obtained,
the purpose is not for the generation code, but for becoming able to confirm the process in the model.

Block usage pattern
	　Usage pattern
	Saturation process
Implementation block
	Down cast
Implementation block

	Type conversion only
(No saturation process)
	－
	DataTypeConversion
(No overflow saturation)

	
	－
	Gain: 1
(No overflow saturation)

	Type conversion after saturation process
for purposes of overflow prevention
	DataTypeConversion
(With overflow saturation)

	
	Gain: 1
(With overflow saturation)

	Not for purposes of overflow prevention
(with significance)
Type conversion after saturation process
	Saturation/Dynamic Saturation
(Type conversion in output type setting)

	
	Saturation/
Dynamic Saturation
	DataTypeConversion
(No overflow saturation)

	
	
	Gain: 1
(No overflow saturation)

	See Also
	MISRA SLSF0002A

	Last Change
	V4.0

[bookmark: _Toc381885080][bookmark: _Toc345416671][bookmark: _Toc353263170][bookmark: _Toc359428549]
[bookmark: _Toc383801803][bookmark: _Toc420056409]jc_0652: Constant related to timer counter
	ID: Title
	jc_0652: Constant related to timer counter

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The constant related to the Timer Counter is not expressed by the number of occurreces but by that specific time.
If the number does not match the time, use a comment to list the time unit.
Can also list in ＜Block Property＞＜Explanation＞ or mpt.Parameter description, and display by using block annotation. Use a consistent method, and insert descriptions of the time unit also for the listing content. [List the time units that have been determined, such as second(s), milliseconds (msec), etc.]

Correct:
Constant is expressed in time

Incorrect:
Constant is not expressed in time

	Notes
	If real number is used, total value may not be equal to real counting time. In that case, set in consideration of the tolerance.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383796149][bookmark: _Toc383801804][bookmark: _Toc353470688][bookmark: _Toc383801844][bookmark: _Toc420056410][bookmark: _Toc359428553][bookmark: _Toc353265984]jc_0659: Usage restrictions of signal lines inputted to Merge block
	ID: Title
	jc_0659: Usage restrictions of signal lines inputted to Merge block

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	No blocks should be positioned between the Conditional Subsystem and Merge block.
Correct:

Incorrect:

	Notes
	Analysis:
A virtual block can be inserted between the Conditional Subsystem and Merge block.
Reference: Virtual block
http: //www.mathworks.co.jp/jp/help/simulink/ug/about-blocks.html
The above subsystem can also output normal results.

However, if the above is allowed, there is a possibility of inducing two mistakes.
This is because it is difficult to understand all of the virtual block types shown in the above Help, and to use the correct combinations.
For example, the Example 1 DataTypeConversion block is not a virtual block. This will not operate correctly.
Example 1

This uses the checker 'mathworks.design.MergeBlkUsage', to detect this case as a violation.
In the next Example 2, the configuration is virtually the same as the Incorrect example, and the input signal to the Bus Creator block is connected from the Ground.
Example 2

In this description, since the Ground block is always active, the bus name b signal always has an output value of 0, and correct results cannot be obtained.
The checker 'mathworks.design.MergeBlkUsage' recognizes that this case is correct.
If a model in the Incorrect example is created, and then converted to the Example 2 type in accordance with later changes in specifications, it will result in unintentional actions.
The intention of this rule is prevention of these mistakes beforehand.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc381885082][bookmark: _Toc383801845][bookmark: _Toc420056411][bookmark: _Toc359428554]jc_0656: Guideline for using the Conditional Control block
	ID: Title
	jc_0656: Guideline for using the Conditional Control block

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	In the Conditional Control Flow block (if block, Switch Case block), use the settings below to make all actions in the conditions explicit.
· For the if block, set "else condition display" to On for use.
· For the Switch Case block, set "display default case" to On for use.

Correct:
Modeling when a function showing the default action exists
　

Correct:
Modeling when a function showing the default action does not exist

Incorrect:
Default port does not exist.

Incorrect:
Default port is not used and all values of used data type are defined.

As seen in this model, even if conditions are set on the full range of input signal types, if data type of input signal is changed, undefined range can exist. This description does not mean clarification has been made for all conditions.

	See Also
	hisl_0010: Guideline for using the if block and Action Subsystem block
hisl_0011: Guideline for using the if block and Action Subsystem block
MISRA AC SLSF 011B

	Last Change
	V4.0

[bookmark: _Toc383796191][bookmark: _Toc383801846][bookmark: _Toc383801894][bookmark: _Toc420056412][bookmark: _Toc353265985][bookmark: _Toc359428555]jc_0657: Retention of output value based on Conditional Control Flow block and Merge block
	ID: Title
	jc_0657: Retention of output value based on Conditional Control Flow block and Merge block

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	If using the Conditional Control block (if block, Switch Case block) to switch the executed function, and using the Merge block to select the results, and if, depending on the conditions, retaining past values only, connection of the condition ports to the Terminator block will clarify retention of past values. (This is different to setting default port)
Correct:
Switch-case example

Correct:
if-else example

If performing automatic code generation, a highly efficient code is outputted without taking up excess RAM. This means that, if past values are retained even in other than default (else), connections to the Terminator block can be used.

Incorrect:

　
While the automatic code generation results are the same as above, it is not clear whether actions outside of conditions are OK with retention of past values.
Incorrect:

Incorrect:
　
While the actions are clear, design of excessive subsystems is necessary for retaining past values, and in some cases the code efficiency deteriorates because of verbose RAM allocation.

	Notes
	It is better to describe comments around Terminator blocks in order to clearly show that it is the block structure to retain past values.

	See Also
	hisl_0010: Guideline for using the if block and Action Subsystem block
hisl_0011: Guideline for using the Switch Case block and Action Subsystem block
hisl_0015: Guideline for using the Merge block
MISRA AC SLSF 011B

	Last Change
	V4.0

111
© Copyright 2013JMAAB. All rights reserved.
[bookmark: _Toc381885084][bookmark: _Toc383801895][bookmark: _Toc420056413][bookmark: _Toc359428556][bookmark: _Toc362020785]Stateflow
Explanation of the Stateflow® chart appearance, data and operation, event, state chart pattern, and flowchart pattern guidelines
[bookmark: _Toc381885085][bookmark: _Toc383801896][bookmark: _Toc420056414]Stateflow variable settings
[bookmark: _Toc381885086][bookmark: _Toc383801897][bookmark: _Toc420056415]db_0123: Stateflow port names
	ID: Title
	db_0123: Stateflow port names

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The name of a Stateflow block input/output should be the same as the corresponding signal.
Exception: Stateflow blocks performing reusable function settings may have different port names.

Stateflow blocks include the Chart block, MATLAB block, and Truth Table, etc.
If adopting jc_0602, this rule is included within it. If jc_0602 is not adopted, use this rule for the Stateflow description only.

	　Notes
	This rule is not a rule for C code generation.(if data objects are used.)
This rule is for improving model readability.
 (
T
he C source use
s
 the
s
ignal object name
which is
set on Simulink.
Mismatch with Simulink signal name
Same as Simulink signal name
)

	See Also
	MISRA AC SLSF 036-C

	Last Change
	V1.0

[bookmark: _Toc381885087][bookmark: _Toc383801898][bookmark: _Toc420056416][bookmark: _Toc353265992][bookmark: _Toc359428559][bookmark: _Toc362020788]jc_0700: Unused data in Stateflow block
	ID: Title
	jc_0700: Unused data in Stateflow block

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Unused data and events should not exist in the Stateflow block.

In R2010b and later, set the configuration parameter
diagnosis ＞Stateflow＞"Unused data and events" to other than "None".
　

	See Also
	MISRA AC SLSF 037G

	Last Change
	V4.0

[bookmark: _Toc383796244][bookmark: _Toc383801899][bookmark: _Toc383801930][bookmark: _Toc420056417][bookmark: _Toc359428560][bookmark: _Toc362020789][bookmark: _Toc353263186]db_0122: Stateflow and Simulink interface signals and parameters
	ID: Title
	db_0122: Stateflow and Simulink interface signals and parameters

	Priority
	Strongly Recommended

	
	

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Use the Simulink and Stateflow types as equivalent.
Select File > Chart Property > “Strict type specification in Simulink I/O".

	Notes
	Attention: This option is going to be deleted on future version.
Property name difference of versions.
Up to R2008b, "Retain data type in Simulink and I/O"
From R2009a, "Strict type specification in Simulink I/O"
If “Use Strong Data Typing with Simulink I/O” is deactivated and Simulink data type is not double, Stateflow cannot be executed.

	Last Change
	V2.0

[bookmark: _Toc383796276][bookmark: _Toc383801931][bookmark: _Toc383796283][bookmark: _Toc383801938][bookmark: _Toc373138470][bookmark: _Toc373138905][bookmark: _Toc373139283][bookmark: _Toc373139662][bookmark: _Toc373237035][bookmark: _Toc373241971][bookmark: _Toc375228757][bookmark: _Toc375229562][bookmark: _Toc375230368][bookmark: _Toc375233449][bookmark: _Toc375296299][bookmark: _Toc375296736][bookmark: _Toc375297171][bookmark: _Toc375298842][bookmark: _Toc375299490][bookmark: _Toc375299923][bookmark: _Toc375558591][bookmark: _Toc373138500][bookmark: _Toc373138935][bookmark: _Toc373139313][bookmark: _Toc373139692][bookmark: _Toc373237065][bookmark: _Toc373242001][bookmark: _Toc375228787][bookmark: _Toc375229592][bookmark: _Toc375230398][bookmark: _Toc375233479][bookmark: _Toc375296329][bookmark: _Toc375296766][bookmark: _Toc375297201][bookmark: _Toc375298872][bookmark: _Toc375299520][bookmark: _Toc375299953][bookmark: _Toc375558621][bookmark: _Toc383801968][bookmark: _Toc420056418][bookmark: _Toc359428562][bookmark: _Toc362020791]db_0125: Scope of internal signals and local auxiliary variables
	ID: Title
	db_0125: Scope of internal signals and local auxiliary variables

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Variables only used inside the Stateflow Chart must satisfy the following conditions:
· All local data of Stateflow block must be defined on the Chart level or below the Object Hierarchy.
· No local variables exist on the machine level. (That is, there is no interaction between local data in different charts).
· Parameters and constants are allowed at the machine level.
· Local data having the same name should not be included within the charts/states with parent-child relationships.

Correct:
Local variable is defined under Chart

Incorrect:
Local variable is defined on machine level on which signals can be shared among several charts.

	See Also
	MISRA AC SLSF 037 B

	Last Change
	V4.0

[bookmark: _Toc383796314][bookmark: _Toc383801969][bookmark: _Toc383802014][bookmark: _Toc420056419][bookmark: _Toc359428563][bookmark: _Toc362020792]jc_0701: Usable numbers in first index
	ID: Title
	jc_0701: Settable numbers in first index

	Priority
	Mandatory

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Set the first index of arrays used in Stateflow to "0" or "1".
Caution:
Since the first index if not specified is handled as "0", there is no need for designation unless specifically required.
Correct:

Incorrect:

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc383796360][bookmark: _Toc383802015][bookmark: _Toc383802047][bookmark: _Toc420056420][bookmark: _Toc353266003][bookmark: _Toc359428564][bookmark: _Toc362020793]jc_0702: Stateflow parameters and constants
	ID: Title
	jc_0702: Stateflow parameters and constants

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	・Parameters and constants within Stateflow should not directly use numbers.
・Labels should be used for the parameters and constants within Stateflow.

Exceptions:
・"0" can be used as an initial value for variables.
・"1: can be used for variable increments and decrements.
Usage examples for ordinary parameters
Correct:

Incorrect:

	See Also
	MISRA AC SLSF 048G、H

	Last Change
	V4.0

[bookmark: _Toc383796393][bookmark: _Toc383802048][bookmark: _Toc383802086][bookmark: _Toc420056421][bookmark: _Toc359428565][bookmark: _Toc362020794]jm_0011: Pointers in Stateflow
	ID: Title
	jm_0011: Pointers in Stateflow

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
 Version
	All

	Prerequisites
	

	Description
	In the Stateflow diagram, pointers to custom code variables should not be used.

Direct reference to pointer variable while accessing to device driver is inhibited.

Incorrect:
void *pointerToVar = (void *) 0x32344a3;

Correct
uint32 Var = Signal;

	Notes
	This rule is not a rule prohibiting use of pointers within the custom code. Within the custom code, pointers to variables within the custom code may be used for access.

Direct reference from Stateflow to variables declared in C code is possible.
· Variable declarations in custom C source code.
MyStruct gMyStructVar;
MyStruct *gMyStructPointerVar=NULL;

· Description in Stateflow chart

Stateflow can directly refer to the signals of gMyStructVar and gMyStructPointerVar which are defined in in C source code.
However, use of signals which is not defined in any model makes model difficult to understand. Although this rule doesn’t limit, it is better to not use it.

	Last Change
	V1.0

[bookmark: _Toc381885093][bookmark: _Toc383802087][bookmark: _Toc420056422][bookmark: _Toc359428566][bookmark: _Toc362020795]Basic appearance of state transition
[bookmark: _Toc381885094][bookmark: _Toc383802088][bookmark: _Toc420056423]db_0129: Stateflow transition appearance
	ID: Title
	db_0129: Stateflow transition appearance

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
 Version
	All

	Prerequisites
	

	Description
	・In Stateflow transitions, the following regulations are applied:
· Do not cross each other as much as possible.
· Do not draw upon the other.
· Do not cross any states, junctions or text fields.
However, crossing with forced transition from external states to internal states is possible.
・For transition labels, set to show visual relationships with the corresponding transition.
Correct:

Correct:
Transition crosses state boundary to connect to substrate

This rule is a rule for prohibiting transition overlap, and does not prohibit state transitions from outside to center, or from center to outside.

Incorrect:
Transitions crosses each other and transition crosses through state.

	Last Change
	V2.2

[bookmark: _Toc383796434][bookmark: _Toc383802089][bookmark: _Toc383796435][bookmark: _Toc383802090][bookmark: _Toc383802127][bookmark: _Toc420056424][bookmark: _Toc359428568][bookmark: _Toc362020797]db_0137: States in state machines
	ID: Title
	db_0137: States in state machines

	Priority
	Mandatory

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	jc_0743: Guideline for writing condition actions
jc_0531: Placement of the default transitions

	Description
	In all levels in a state machine, including the root level, for states with exclusive decomposition, the following rules apply:
· In the same level, at least two exclusive states must exist.
If parallel is selected, only one state can be established.

	Notes
	In the old description, jc_0531 was here: Only part of the default transition was listed, and it was deleted since there were duplicated roots.

	Last Change
	V4.0

[bookmark: _Toc383796473][bookmark: _Toc383802128][bookmark: _Toc383802166][bookmark: _Toc420056425][bookmark: _Toc353265993][bookmark: _Toc359428570][bookmark: _Toc362020799]jc_0711: Division in Stateflow
	ID: Title
	jc_0711: Division in Stateflow

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	If using division, the user must perform modeling of process for avoiding division by zero.

	Notes
	

	See Also
	MISRA AC SLSF 038B

	Last Change
	V4.0

[bookmark: _Toc381885098][bookmark: _Toc383802167][bookmark: _Toc420056426][bookmark: _Toc160418019][bookmark: _Toc352590925][bookmark: _Toc359428571][bookmark: _Toc362020800]jc_0531: Placement of the default transition
	ID: Title
	jc_0531: Placement of the default transition

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	db_0137: States in state machines

	Description
	Default transitions should be drawn so that the following conditions are satisfied:
· If an exclusive (OR) and substate exist, the default transition is internally established.
· Multiple default transitions cannot be included in the same level.
· Default transitions are directly connected to the upper part of the state or junction.
· The transition destination state or transition destination junction for the default transition is positioned in the far upper left within the same level.
· The default transition must not exceed the state boundary.
· The default transition within a state chart must have a non-guard path to the state.
Correct:
　
Incorrect:
Multiple default transitions are included in the same level.
　
 (
[!

C1]
)
Incorrect:
The default transition is positioned in the side area.
The transition destination state of the default transition is not the highest within the same level.

　

Incorrect:　The default transition exceeds the boundary.

Incorrect:
There is no non-guard transition.

	Notes
	· If the state with default transition is placed on most left-upper position,
transition goes from top to bottom or from left to right.
· Violation of“the default transition within a state chart must have a non-
guard path to the state.” can be avoided by setting <Configuration><Diagnostics><Stateflow><No unconditional default transitions> to warning or error.

	See Also Guidelines
	MISRA AC SLSF 042ABCDE
MISRA AC SLSF 051A (051A is a rule about layouts)

	Last Change
	V4.0

[bookmark: _Toc383796513][bookmark: _Toc383802168][bookmark: _Toc383802235][bookmark: _Toc420056427][bookmark: _Toc359428573][bookmark: _Toc362020802]jc_0712: Execution timing for default transition path
	ID: Title
	jc_0712: Execution timing for default transition path

	Priority
	Mandatory

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	In all Stateflow Charts, "Execute the specified Chart at time of initialization" must be deactivated.

Release the selection of File > Chart Property > “Execute the specified Chart at time of initialization".

　　

	See Also
	MISRA AC SLSF 034D

	Last Change
	V4.0

[bookmark: _Toc383796581][bookmark: _Toc383802236][bookmark: _Toc383802267][bookmark: _Toc420056428]na_0038: Levels in Stateflow charts
	ID: Title
	na_0038: Levels in Stateflow charts

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	See Also
	

	Description
	Within a single Viewer (Subviewer), multiple layering should be limited.
For example, within a single Viewer (Subviewer), limiting goals for up to 3 levels should be established.
If the constraint goals are exceeded, use subcharting to switch the screen.

Incorrect: Level_4_a and Level_4_b have more than 3 levels, and are nested.

Correct: The 4th level is encapsulated in a subchart.

	See Also
	

	Last Change
	V3.0

[bookmark: _Toc381885101][bookmark: _Toc383802268][bookmark: _Toc420056429][bookmark: _Toc359428574][bookmark: _Toc362020803]na_0040: Number of states per container
	ID: Title
	na_0040: Number of states per container

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	See Also
	

	Description
	The number of viewable states per Stateflow Viewer (Subviewer) should be limited.
(Typically to 6 to 9 states per Viewer)
This number is based on the visible states in the diagram.

Correct:

	See Also
	

	Last Change
	V3.0

[bookmark: _Toc381885102][bookmark: _Toc383802269][bookmark: _Toc420056430][bookmark: _Toc359428575][bookmark: _Toc362020804]jc_0720: Guideline for using subcharting
	ID: Title
	jc_0720: Guideline for using subcharting

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Subcharting is used in the following cases.
· State machine is hard to view on the screen.
· Hard to view in printed state.
This rule is not applicable to Atomic Subchart.
Subchart Example:
　

	See Also
	MISRA AC SLSF 039B

	Last Change
	V4.0

[bookmark: _Toc383796615][bookmark: _Toc383802270][bookmark: _Toc383802302][bookmark: _Toc420056431][bookmark: _Toc353265995][bookmark: _Toc359428576][bookmark: _Toc362020805]jc_0721: Guidelines for using parallel states
	ID: Title
	jc_0721: Guidelines for using parallel states

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Parallel states should not be used for the purpose of grouping.
That is, the substates of parallel states should not be parallel states.
Correct:
　
Incorrect:
Substates of parallel states are parallel states.

　
The four states (A, B, C, D) are in the same execution order, even if there is no parent (Group1, Group2).

	See also
	MISRA AC SLSF 040B

	Last Change
	V4.0

[bookmark: _Toc383796648][bookmark: _Toc383802303][bookmark: _Toc383802338][bookmark: _Toc420056432][bookmark: _Toc353265991][bookmark: _Toc359428577][bookmark: _Toc362020806]jc_0722: Guidelines for setting local variables in parallel states
	ID: Title
	jc_0722: Guidelines for setting local variables in parallel states

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Unless the same data is required by two or more parallel states, the scope of local variables should be set to be restricted to one parallel state.

	See also
	MISRA AC SLSF 037D

	Last Change
	V4.0

[bookmark: _Toc383796684][bookmark: _Toc383802339][bookmark: _Toc383802365][bookmark: _Toc420056433][bookmark: _Toc345416693][bookmark: _Toc353263280][bookmark: _Toc359428578][bookmark: _Toc362020807]jc_0723: Prohibited direct transition from external state to child state
	ID: Title
	jc_0723: Prohibited direct transition from external state to child state

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The transition from external state to child state is prohibited.
However, it is possible to transfer from child state to an external parent state.

· When viewed from the child, other parents that exist in parallel to one's own parent, or the child of other parents, exist outside of objects that have been encapsulated. Based on this premise, transitions that are direct transitions into other objects from outside of an object should be prohibited.
If this transition is set, there is a high possibility that the concept of encapsulating the state is incorrect.
Unless it is configured with a correct understanding of the concept of the state, the system will become complicated and the content would not be understood. By using such transitions, the state will become complicated, the specification will not be clear, and it will be a factor in causing mistakes in the specification itself.

Correct:　　　　　　　　　　　　　　　　　　　　　　　　　Incorrect:
 (
The
transition from the super State A0 to another
child
 S
tate
 B1.
) (
The
transition from the super
State A0 to another super State
 B0.
)

 (
The
transition from the
child
 State A
1
 to another
child
 State
 B1.
) (
The
transition from the
child
 State A
1
 to another super State
 B0.
)

However, if the super state A0 is a virtual state that does not exist in reality and was created in order to use the internal transition or unify transition lines, it is classified in the state referred to as virtual state or "pseudo state" expressed in UML. For this kind of state, the above rules do not apply.
Virtual states, or states referred to as pseudo states, and normal states should be written differently by distinction, and the scope of application of rules should be made clear.

	See also
	

	Last Change
	V4.0

[bookmark: _Toc383796711][bookmark: _Toc383802366][bookmark: _Toc381885106][bookmark: _Toc383802435][bookmark: _Toc420056434][bookmark: _Toc359428579][bookmark: _Toc362020808]Description of state label
[bookmark: _Toc381885107][bookmark: _Toc383802436][bookmark: _Toc420056435]jc_0730: Independence of state name in charts
	ID: Title
	jc_0730: Independence of state name in charts

	Priority
	Mandatory

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	State names must be unique in charts.
Atomic sub-charts within charts should be treated as separate charts.
In other words, state names must be unique in the atomic sub-charts, but there would not be a problem even if the same state name existed in a different atomic sub-chart.

(Atomic sub-charts can be used from R2010b)

Correct:

Incorrect:

Reference: Guidelines for creating an atomic sub-chart
Atomic sub-charts can be created from the right-click menu.

	See also
	MISRA AC SLSF 052A

	Last Change
	V4.0

[bookmark: _Toc345416677][bookmark: _Toc353263176][bookmark: _Toc359428581][bookmark: _Toc362020810][bookmark: _Toc353266006]

[bookmark: _Toc381885108][bookmark: _Toc383802437][bookmark: _Toc420056436]jc_0731: Slash (/) in the state name
	ID: Title
	jc_0731: Slash (/) in the state name

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Slashes (/) should not be included in state names.
Start a new line after the state name without describing executable statements.
Correct:

Incorrect:

In case of describing executable statements in continuation after state names, a slash (/) is required.

	See also
	

	Last Change
	V4.0

[bookmark: _Toc359428582][bookmark: _Toc362020811]
[bookmark: _Toc383802438][bookmark: _Toc420056437]
jc_0732 ：Distinction between state name and data item name
	ID: Title
	jc_0732: Distinction between state name and data item name

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	In a single chart, the same name as the data item should not be given to the state name.

Correct:

Incorrect:

	See also
	MISRA AC SLSF 052B

	Last Change
	V4.0

[bookmark: _Toc381885110][bookmark: _Toc383802439][bookmark: _Toc420056438][bookmark: _Toc353266013][bookmark: _Toc359428583][bookmark: _Toc362020812]jc_0733: Order of state action types
	ID: Title
	jc_0733: Order of state action types

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Action types should be stated in the order of entry (en), during (du) and exit (ex).
・ In the case of describing combination action types (en,du: , du,ex: , en,ex: , en,du,ex: , the combination action types should only be described in the line at the top or the end.

	
	Correct

	Incorrect

The combination statement is at the center of the whole.
The entry processing is described after the exit processing.

	
	

	See also
	MISRA AC SLSF 055A

	Last Change
	V4.0

[bookmark: _Toc383796785][bookmark: _Toc383802440][bookmark: _Toc383796807][bookmark: _Toc383802462][bookmark: _Toc383796815][bookmark: _Toc383802470][bookmark: _Toc383802479][bookmark: _Toc420056439][bookmark: _Toc353266014][bookmark: _Toc359428584][bookmark: _Toc362020813]jc_0734: Number of state action types
	ID: Title
	jc_0734: Number of state action types

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	jc_0733: Order of state action types

	Description
	The same action types (entry (en), during (du), exit (ex), en, du: , du, ex: , en, ex: , en, du, ex:) should not be described two or more times.

In particular, when using both the single actions of en and du and the combination action of "en, du: ", the execution order should differ depending on the order in which they are described.
If the action type is described more than once, the actual execution order will be hard to understand.

	
	Correct

	Incorrect

The entry is separated in two and described twice.

	
	

	See also
	MISRA AC SLSF 055D

	Last Change
	V4.0

[bookmark: _Toc383796825][bookmark: _Toc383802480][bookmark: _Toc383796848][bookmark: _Toc383802503][bookmark: _Toc383796855][bookmark: _Toc383802510][bookmark: _Toc383802519][bookmark: _Toc420056440][bookmark: _Toc345416684][bookmark: _Toc353263183][bookmark: _Toc359428591][bookmark: _Toc362020820][bookmark: _Toc359428585][bookmark: _Toc362020814]jc_0740: Usage restrictions of action type exit
	ID: Title
	jc_0740: Usage restrictions of action type exit

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Exit should not be used when the design intent can be expressed by the transition destination entry, condition action and transition action.

Because exit is executed when the state transitions to another state, the execution timing will become ambiguous.

	See also
	

	Last Change
	V4.0

[bookmark: _Toc383802520][bookmark: _Toc420056441]jc_0501: Format of entries in a State block
	ID: Title
	jc_0501: Format of entries in a State block

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	A new line should:

· Start after state names.
· Start after the entry (en), during (du) and exit (ex) statements " : ".
· Start after the completion of an assignment statement ";".
	Correct:

	Incorrect:
Failed to start a new line after en, du and ex.

Incorrect:
Failed to start a new line after the completion of an assignment statement ";".

	Notes
	This rule has intention of not indicating actions, such as en and du, behind the State name. It does not become violation even if it attaches / behind the State name.
jc_0731 is prohibition of /.

	Last Change
	V4.0

[bookmark: _Toc383796866][bookmark: _Toc383802521][bookmark: _Toc383802570][bookmark: _Toc420056442][bookmark: _Toc353265999][bookmark: _Toc359428586][bookmark: _Toc362020815]jc_0735: Semicolons in state label
	ID: Title
	jc_0735: Semicolons in state label

	Priority
	Mandatory

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The end of each action in state label must be a semicolon ";" .
Note: Action types (entry(en), during(du) and exit(ex)) are not subject to this rule.

Correct:

Incorrect:

If the semicolon ";" is taken out, the value is outputted to the command window after running the simulation.
It is convenient if it is used when checking operations, but the simulation speed will be slower.

	See also
	MISRA AC SLSF 043D

	Last Change
	V4.0

[bookmark: _Toc381885114][bookmark: _Toc383802571][bookmark: _Toc420056443][bookmark: _Toc359428587][bookmark: _Toc362020816]jc_0736: Uniform indentations in Stateflow blocks
	ID: Title
	jc_0736: Uniform indentations in Stateflow blocks

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	jc_0752: Parentheses of condition actions

	Description
	Indentations in Stateflow blocks should be described uniformly.
1. Example of state label rules
· No spaces in front of action types (entry (en), during (du) and exit (ex))
· Insert one space for other statements.
2. Example of transition-condition and action rules
· Do not insert spaces before [].
3. Example of transition-action rules
· Always insert one space.
	Correct: Indentations are described uniformly.

	Incorrect: Indentations are not uniform.

Note:
In versions after R2012b, it is possible to use MATLAB language-based charts called Chart MATLAB, instead of the conventional C-based ones.
In these MATLAB language-based charts, an indentation is automatically added at the time of describing the state labels. The rules of indentation are unified by the following:
· No spaces in front of entry (en), during (du) and exit (ex) statements
· Insert one space for other statements.
Transition lines do not have an automatic indentation function.

	See also
	

	Last Change
	V4.0

[bookmark: _Toc383796917][bookmark: _Toc383802572][bookmark: _Toc383802617][bookmark: _Toc420056444][bookmark: _Toc345416686][bookmark: _Toc353263185][bookmark: _Toc359428588][bookmark: _Toc362020817]jc_0737: Uniform spaces before and after operators
	ID: Title
	jc_0737: Uniform spaces before and after operators

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Spaces before and after operators should be described uniformly.
1. Example of arithmetic operator rules
· For unary operators, do not insert a space between the operators and operands.
· For binary operators, insert one or more space between the operators and operands.
Correct: 　　　　　　　　　
A = B□+□(-1);　　　　
Incorrect: 　　　　　 　　 Incorrect:
A = B□+□(-□1);　　　　　A = B+(-1);

2. Example of increment/decrement operator rules
· Do not insert a space between the operators and operands.
Correct:
a++;
Incorrect:
a□++

3. Example of relational operator (comparative operator) rules
· Insert one or more space between the operators and operands.
Correct: 　 　　　　　　　　 Correct
[A □>□B]　　　　　　　　　　[A □>＝□B]
Incorrect: 　　　　　　　　 Incorrect:
[A >B] 　　　　　　　　　　　　　[A >＝B]

4. Example of logical operator and C-bit operator rules
· Insert one or more space between the operators and operands.
However, in the case of using negation operators [! , ~] and the complement of C-bit operators [~], do not insert a space between the operators and operands.
Correct: 　　　　　　　　　　　　　　　Correct:
[A = B□&□C]　　　　　　　　　　[A = !B□&□C]
Incorrect: 　　　　　　　　　　　　 Incorrect:
[A = B&C]　　　　　　　　　　 [A = !□B□&□C]

5. Example of assignment operator [=] and compound assignment operator [+=, -=, *=, /=, %=, <<=, >>=, ^=, |=] rules
· Insert one or more space between the operators and operands.
Correct: 　　　　　　　　　　　　
A□=□B□+□(-1);　　　　A□+=□1;
Incorrect: 　　　　　　　　　　　　 Incorrect:
A=B+(-1);　　　　　　　　A+=1;

6. Example of pointer operator [*, &] rules
· Do not insert a space between the operators and operands.
Correct: 　　　　　　　　　　　　
A = fcn(x,y,&map);　　　　
Incorrect: 　　　　　　　　　　　　
A = fcn(x,y,&□map);　　　

7. Example of array index [[]] rules
· Do not insert a space between the operators and operands.
Correct: 　　　　　　　　　　　　
A = B[1] + C[k + 1];　　　　
Incorrect: 　　　　　　　　　　　　
A = B□[1] + C[k + 1];

8. Handling of new lines
· New lines may be started in the middle of an expression if there are many characters in a line and it is unavoidable.
· For operators that require spaces, it is okay for new lines to be started immediately before or after an operator, and the number of spaces before or after operators is optional.
· However, for operators in which spaces must not be inserted, new lines should not be started.

Correct:

Incorrect:
The expression is hard to read because there are no spaces.

	Notes
	Operand: It means operation target value and variables in computer programming.
For example, in the expression “A+10”, “A” and “10” are operands. “+” is operator.
Unary operator is used to express minus value like “-1”
Binary operator is used to express one operation like “+” in “K+3”

	See also
	

	Last Change
	V4.0

[bookmark: _Toc383796963][bookmark: _Toc383802618][bookmark: _Toc383802710][bookmark: _Toc420056445][bookmark: _Toc345416678][bookmark: _Toc353263177][bookmark: _Toc359428589][bookmark: _Toc362020818]jc_0738: Guidelines for writing comments in state actions
	ID: Title
	jc_0738: Guidelines for writing comments in state actions

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	When using /* */ in the comment, new lines must not be started in the middle.
This is in order to prevent duplicated comment symbols /* */

Correct:

Incorrect:

	Notes
	Note:
In versions after R2012b, it is possible to use MATLAB language-based charts called Chart MATLAB, instead of the conventional C-based ones.
In these MATLAB language-based charts, only the % comments used in MATLAB language can be used for comments.

	See also
	

	Last Change
	V4.0

[bookmark: _Toc383797056][bookmark: _Toc383802711][bookmark: _Toc383802749][bookmark: _Toc420056446][bookmark: _Toc353266004][bookmark: _Toc359428590][bookmark: _Toc362020819]jc_0739: Guidelines for describing texts inside states
	ID: Title
	jc_0739: Guidelines for describing texts inside states

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Texts inside states should not be described beyond the boundaries of that state.
Correct:

Incorrect:

The transition condition goes beyond the boundaries of the state

The state action goes beyond the boundaries of the state

The comment goes beyond the boundaries of the state

	See also
	MISRA AC SLSF 050F

	Last Change
	V4.0

[bookmark: _Toc383797095][bookmark: _Toc383802750][bookmark: _Toc383802790][bookmark: _Toc420056447][bookmark: _Toc345416683][bookmark: _Toc353263182][bookmark: _Toc359428592][bookmark: _Toc362020821]jc_0741: Timing to update the variables used in the state's transition conditions
	ID: Title
	jc_0741: Timing to update the variables used in the state's transition conditions

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Variables that will be used in the state's transition conditions should not perform an update by "during".

Note
The processing of "during" will be executed if a transition does not occur after the state's transition conditions are executed.
If a statement such as the "Incorrect" below is made, there is a possibility that the transition timing will be delayed by one sampling
because the transition will use the results executed one time prior.

Correct: 　　　　　　　　　　　　　　　　　　　　　　　　　Incorrect:
　　　　

	See also
	

	Last Change
	V4.0

143
© Copyright 2013JMAAB. All rights reserved.

27
© Copyright 2013JMAAB. All rights reserved.
[bookmark: _Toc381885121][bookmark: _Toc383802791][bookmark: _Toc420056448][bookmark: _Toc366771640][bookmark: _Toc359428594]Conditions and conditional actions
Describes the method of condition description that will be common in the description of both state transition and Flow Chart.
[bookmark: _Toc381885122][bookmark: _Toc383802792][bookmark: _Toc420056449]jc_0742: Guidelines for writing Boolean operations in condition labels
	ID: Title
	jc_0742: Guidelines for writing Boolean operations in condition labels

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	jc_0751: Backtracking prevention in state transition
[bookmark: OLE_LINK56]jc_0773: Guidelines for describing exception processing

	Description
	· If there are up to three conditions, they can be described on one line.
· If there are two or more types of Boolean operations, priorities should be described using parentheses.
· If there are four or more conditions, they can be described in more than one line.
· If two or more types of Boolean operations are described in more than one line, position of operations (before conditions or after conditions) should be unified in the chart.

Correct:
Multiple conditions are described on one line

Correct:
Multiple conditions are described on more than one line
(positions of operations are unified to after conditions)

Correct:
Multiple conditions are described on more than one line
(positions of operations are unified to before conditions)

Incorrect
Although different types of logical operator exist, priority by using parenthesis is not shown.

Incorrect:
Four conditions are described in one line.

	Notes
	In this rule, the writing method of Boolean operations within conditions as well as its limitations are described.
Here, there is no description of how to separate a single condition or its limitations.
In the case of separating a condition, a description that adheres to jc_0751 for state transitions and to jc_0773 for Flow Charts is necessary so that backtracking does not occur.

	See also
	

	Last Change
	V4.0

[bookmark: _Toc383802793][bookmark: _Toc420056450][bookmark: _Toc345416675][bookmark: _Toc353263174][bookmark: _Toc359428619][bookmark: _Toc366771642]jc_0770: Placement of conditional statements and action statements
	ID: Title
	jc_0770: Placement of conditional statements and action statements

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	db_0129: Stateflow transition appearance

	Description
	For the placement of the conditional statement of the Flow Chart and the action statement, select either of the following and unify it within the model (1 is recommended)

1． Describe from near the transition origin of the transition (transition line).
2． Describe near the center of the transition (transition line).

It is important to know which transition's condition the conditional statement and action statement belong to.
Also ensure that the conditional and action statements do not overlap with other characters and lines.
(db_0129: Stateflow transition appearance)

Correct:

Incorrect:
It is difficult to know which transition (transition line) the condition belongs to.

	Notes
	

	See also
	

	Last Change
	V4.0

[bookmark: _Toc383802794][bookmark: _Toc420056451]jc_0771: Placement of comments in transition lines
	ID: Title
	jc_0771: Placement of comments in transition lines

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Placement of comment descriptions in transition lines
· Unify to either the top or bottom of the conditional statement.
· Unify to either the top or bottom of the action statement.
"Unifying the descriptions to the top side" is recommended.

It is important that which conditional statement the comment corresponds to is explicitly stated.

Example

	See also
	

	Last Change
	V4.0

[bookmark: _Toc383802795][bookmark: _Toc420056452][bookmark: _Toc345416681][bookmark: _Toc353263180][bookmark: _Toc359428627]jc_0772: Execution order and transition conditions of transition lines
	ID: Title
	jc_0772: Execution order and transition conditions of transition lines

	Priority
	Mandatory

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Transitions other than the last one in the execution order must always set conditions.

Correct:

Incorrect:

Execution order 1 is an unconditional transition and conditional expression [C1] is described in execution condition 2.

Examples includes state transition
Correct:
　
Incorrect
Priority of unconditional transition is higher than conditional transition.
　　
In state transition, uncontitional transition is not invariably necessary.

	See also
	

	Last Change
	V4.0

[bookmark: _Toc383802796][bookmark: _Toc420056453]jc_0752: Parentheses of condition actions
	ID: Title
	jc_0752: Parentheses of condition actions

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The parentheses of condition actions should make one line just by the parentheses.
(Start a new line before and after parentheses.)

	Correct

	Incorrect

The example was described in the Flow Chart but the same applies to state transitions.

	See also
	MISRA AC SLSF 054E

	Last Change
	V4.0

[bookmark: _Toc383797142][bookmark: _Toc383802797][bookmark: _Toc383802832][bookmark: _Toc420056454][bookmark: _Toc366771643]jc_0743: Guidelines for writing condition actions
	ID: Title
	jc_0743: Guidelines for writing condition actions

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The writing method of state condition actions and Flow Chart actions are shown below..

Describe a semicolon (;) at the end of an action.

If there is one action
	Example of a state condition action:

	Example of a Flow Chart condition action:

If there are two or more actions, describe them in more than one line. (Multiple actions should not be described in 1 line.)
	Example of a state condition action:

	Example of a Flow Chart condition action:

	See also
	

	Last Change
	V4.0

[bookmark: _Toc381885125][bookmark: _Toc383802833][bookmark: _Toc420056455]State transition
[bookmark: _Toc381885126][bookmark: _Toc383802834][bookmark: _Toc420056456]jc_0750: Guidelines for drawing transition lines in Stateflow
	ID: Title
	jc_0750: Guidelines for drawing transition lines in Stateflow

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The transition lines inside the state chart are drawn by horizontal and vertical straight lines.

Correct Vertical:

Correct Horizontal:

Incorrect:
The transition lines from state to state are connected by curved lines.

	See also
	MISRA AC SLSF 053E

	Last Change
	V4.0

[bookmark: _Toc383797180][bookmark: _Toc383802835][bookmark: _Toc383797181][bookmark: _Toc383802836][bookmark: _Toc383802870][bookmark: _Toc420056457][bookmark: _Toc353265998][bookmark: _Toc359428596]jc_0751 : Backtracking prevention in state transition

	ID: Title
	jc_0751: Backtracking prevention in state transition

	Priority
	Mandatory

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Complex conditions must not be separated by connective junctions.
(In order to prevent backtracking)

Correct: Complex conditions are described all together.

Incorrect: Complex conditions are separated by a connective junction.

Detailed patterns are descrived below.

Correct: Complex conditions are described all together.

Correct: All connective junctions have branches.

Correct: Two conditions are described together.

	
	 (
Equivalent
)

Correct: Connective junction between conditions has branches.
 (
Equivalent
)
Incorrect: Connective junction between conditions has only one path.

In case of C1==ON and C2==OFF, transition seems to be terminated on the connective junction after [(C1==ON)]. However, in case of C2==OFF, backtracking occurs and {out=1} is executed.

Incorrect: Connective junction between conditions has only one path.

In case of C1==ON and C2==OFF, transition seems to be terminated on the connective junction after [(C1==ON)]. However, in case of C2==OFF, backtracking occurs and [Condition3] is evaluated. In that case, even If C1==ON is true, if [Condition3] is true, transition to a3 occurs.

	Notes
	jc_0773 intends to prevent backtracking on flowchart. Complying to that rule, unconditional transition is designed to ensure transition reaches terminal junction.
However, on state transition, chart is intentionally designed so that transition doesn't reach to terminal junction. This means if condition is not met, transition does not occur.
First connective junction is not branched. This can be understood as intended transition inhibition.
However, in case not branched connective junction is placed between two conditions, unintended backtracking may occur. This rule is in order to prevent it.

Description：
 Example ：Diagnosis

- Two continuous conditions connect with one junction.
- conditions exist further behind that.
This is detected as an unexpected back truck king.

This problem is detectable by diagnosis.
This rule is summarizing the beforehand continuous conditions to one, and aims at preventing this problem beforehand.
The upper model is designed as follows.

	See also
	MISRA AC SLSF 043C

	Last Change
	V4.0

[bookmark: _Toc353265996]
[bookmark: _Toc381885128][bookmark: _Toc383802871][bookmark: _Toc420056458][bookmark: _Toc353265997][bookmark: _Toc359428600][bookmark: _Toc359428599][bookmark: _Toc359428598]jc_0754: Transition actions in Stateflow
	ID: Title
	jc_0754: Transition actions in Stateflow

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Transition actions must not be used.
	Correct:

	Incorrect:

	See also
	MISRA AC SLSF 043B

	Last Change
	V4.0

[bookmark: _Toc383797217][bookmark: _Toc383802872][bookmark: _Toc383802904][bookmark: _Toc420056459]jc_0753: Condition actions and transition actions in Stateflow
	ID: Title
	jc_0753: Condition actions and transition actions in Stateflow

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Condition actions and transition actions should not be mixed within the same chart.
They should be integrated into one.

	Correct:

	Incorrect:

	See also
	MISRA AC SLSF 043 A

	Last Change
	V4.0

[bookmark: _Toc383797250][bookmark: _Toc383802905][bookmark: _Toc383802938][bookmark: _Toc420056460]db_0151: State machine patterns for transition actions
	ID: Title
	db_0151: State machine patterns for transition actions

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The following patterns are used for transition actions within state machine patterns:

	Equivalent Functionality
	State Machine Pattern

	ONE TRANSITION ACTION:
action;
	

	TWO OR MORE TRANSITION ACTIONS, MULTILINE FORM:
(Two or more transition actions in one line are not allowed)
action1;
action2;
action3;
	

	Last Change
	V2.2

[bookmark: _Toc381885131][bookmark: _Toc383802939][bookmark: _Toc420056461][bookmark: _Toc359428601]na_0013: Comparison operation in Stateflow
	ID: Title
	na_0013: Comparison operation in Stateflow

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	· Comparisons should be made only between variables of the same data type.
· If comparisons are made between variables of different data types, the variables need to be explicitly type cast to matching data types.

	Correct:
Same data type in "i" and "n"
　
	Incorrect:
Different data type in "i" and "n"

	Correct:
Although “i” and “n” have different datatype, explicit type cast is applied.

	

	Incorrect:
Do not make comparisons between unsigned integers and "negative numbers."

	Last Change
	V2.1

[bookmark: _Toc383797285][bookmark: _Toc383802940][bookmark: _Toc383802985][bookmark: _Toc420056462][bookmark: _Toc359428602]jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow
	ID: Title
	jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	· Do not use hard equality comparisons (Var1 == Var2) or (Var1 != Var2) or (Var1 ~= Var2) with two floating point numbers.
· If a hard comparison is required, a margin of error should be defined and used in the comparison (LIMIT in the example).
· Hard equality comparisons may be done between integer data types.

Correct:

Incorrect:

	Last Change
	V2.0

[bookmark: _Toc383797331][bookmark: _Toc383802986][bookmark: _Toc381885133][bookmark: _Toc420056463][bookmark: _Toc359428604]na_0001: Bitwise Stateflow operators
	ID: Title
	na_0001: Bitwise Stateflow operators

	Priority
	Strongly Recommended

	Scope
	MAAB

	Prerequisites
	

	Description
	Bitwise operators (*&”,”|”,”^”,”~”) should not be used other than bit operations.

To enable bitwise operations, follow the steps below:
1. Select File > Chart Properties.
2. Select "Enable C-bit operations".

	Correct:
Use && and "||" for Boolean operation.
　　

Use & and | for bit operation.
　　

	Incorrect:
Use & and "|" for Boolean operation.
　　

	Notes
	 List of operational effect of each operator
	Operator
	C-bit operations are enabled

	
	OFF
	ON

	a|b
	Boolean OR of a,b
	Bitwise OR of a,b

	a||b
	Boolean OR of a,b
	Boolean OR of a,b

	a&b
	Boolean AND of a,b
	Bitwise AND of a,b

	a&&b
	Boolean AND of a,b
	Boolean AND of a,b

	a^b
	bth power of a
	Bitwise XOR of a,b

	! a
	Boolean negation of a
	Boolean negation of a

	~a
	Boolean negation of a
	Complement of a

	Last Change
	V4.0

[bookmark: _Toc383797363][bookmark: _Toc383803018][bookmark: _Toc383803102][bookmark: _Toc420056464][bookmark: _Toc353265994][bookmark: _Toc359428605]jc_0655: Prohibited comparison operation of logical type signal in Stateflow
	ID: Title
	jc_0655: Prohibited comparison operation of logical type signal in Stateflow

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	jc_0757: Condition expressions should set a comparison operator
na_0002: Appropriate implementation of fundamental logical and numerical operations

	Description
	· Logical operations must not be applied to boolean values.
Boolean type signals must not be compared with numbers (0, 1) or logical values (true, false).
· Use Boolean operation (NOT) when inverting logical type signals.
· Usage of either ~ or ! for negation should at least be uniform in the chart.
Preferably, specified rules should be made for each project pertaining to the writing method of negative statements, and they should be unified in the model.

Correct:
 (
[! ONflg]
It is better to use "!" for negation
)

Incorrect:

When using logical type signals as condition flags, it is not necessary to write the match with true or false. If performing code generation, an optimized code will be outputted regardless of whether it is described. This rule emphasizes readability by uniformity of appearance.

	See also
	

	Notes
	na_0001: If rules of bitwise Stateflow operators are adopted and bitwise operations are made valid, "~" will be a complement of 2. If it is used in conjunction with na_0001, only "!" can be used for negation.

	Operator
	C-bit operations are enabled

	
	OFF
	ON

	a|b
	Logical OR of a,b
	Bitwise OR of a,b

	a||b
	Logical OR of a,b
	Logical OR of a,b

	a&b
	Logical AND of a,b
	Bitwise AND of a,b

	a&&b
	Logical AND of a,b
	Logical AND of a,b

	a^b
	bth power of a
	Bitwise XOR of a,b

	! a
	Logical negation of a
	Logical negation of a

	~a
	Logical negation of a
	Complement of 2

	Last Change
	V4.0

[bookmark: _Toc381885135][bookmark: _Toc383803103][bookmark: _Toc420056465][bookmark: _Toc359428606]jc_0451: Use of unary minus on unsigned integers in Stateflow
	ID: Title
	jc_0451: Use of unary minus on unsigned integers in Stateflow

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Do not perform unary minus on unsigned integers.
	Correct:

	Incorrect:

	Last Change
	V2.0

[bookmark: _Toc383797449][bookmark: _Toc383803104][bookmark: _Toc383803134][bookmark: _Toc420056466][bookmark: _Toc345416688][bookmark: _Toc353263187][bookmark: _Toc359428607]jc_0755: Guidelines for use of increments/decrements
	ID: Title
	jc_0755: Guidelines for use of increments/decrements

	Priority
	Mandatory

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Increment/decrement operators should be used as one action.

Correct:

Incorrect:

	See also
	

	Last Change
	V4.0

[bookmark: _Toc383797480][bookmark: _Toc383803135][bookmark: _Toc381885137][bookmark: _Toc383803169][bookmark: _Toc420056467][bookmark: _Toc345416689][bookmark: _Toc353263188][bookmark: _Toc359428608]jc_0756: Prohibited use of operation expressions in array indexes
	ID: Title
	jc_0756: Prohibited use of operation expressions in array indexes

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Sequence numbers should not be calculated in the array indexes.

Correct:

Incorrect:

	See also
	

	Last Change
	V4.0

[bookmark: _Toc383797515][bookmark: _Toc383803170][bookmark: _Toc383803200][bookmark: _Toc420056468][bookmark: _Toc345416691][bookmark: _Toc353263278][bookmark: _Toc359428609]jc_0757: Guidelines for describing condition expressions
	ID: Title
	jc_0757: Guidelines for describing condition expressions

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	jc_0655: Prohibited comparison operation of logical type signal in Stateflow

	Description
	Expressions which return boolean value should be used for condition expressions.

Correct:

Correct:

Incorrect:

	See also
	

	Last Change
	V4.0

[bookmark: _Toc383797546][bookmark: _Toc383803201][bookmark: _Toc383797575][bookmark: _Toc383803230][bookmark: _Toc383803239][bookmark: _Toc420056469][bookmark: _Toc359428610]jc_0491: Reuse of variables within a single Stateflow scope
	ID: Title
	jc_0491: Reuse of variables within a single Stateflow scope

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The same variable should not have multiple meanings (usages) within a single Stateflow state.
	Correct:
Variable of loop counter must not be used other than loop counter.

	Incorrect:
The meaning of variable "i" changes from the index of the loop counter to the sum of a+b.

	Examples in state transition
Definitions of temporary calculation result variables a,b which are used only in each state.

	Correct:
Variables a,b are declared as local variable in each state.

	Incorrect:
Local variables a,b are defined on upper layer.

	Last Change
	V2.2

[bookmark: _Toc381885140][bookmark: _Toc383803240][bookmark: _Toc420056470][bookmark: _Toc359428611]jc_0521: Use of the return value from graphical functions
	ID: Title
	jc_0521: Use of the return value from graphical functions

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The return value from a graphical function should not be used directly in a comparison operation.
	Correct:
An intermediate variable is used in the conditional expression after the assignment of the return value from the function "temp_test" to the intermediate variable "a".
 (
The data type of the variable in the comparison operation is clear
)

	Incorrect:
Return value of the function "temp_test" is used in the conditional expression.

	[bookmark: OLE_LINK40][bookmark: OLE_LINK39][bookmark: OLE_LINK38]Last Change
	[bookmark: OLE_LINK41]V2.0

[bookmark: _Toc381885141][bookmark: _Toc383803241][bookmark: _Toc420056471][bookmark: _Toc359428612]Internal transition of the state transition
[bookmark: _Toc381885142][bookmark: _Toc383803242][bookmark: _Toc420056472]jc_0760: Starting point of internal transition in Stateflow
	ID: Title
	jc_0760: Starting point of internal transition in Stateflow

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	In all state charts and Flow Charts, internal transitions from state boundaries should start from the left edge of the state.

Correct:
　

Incorrect:
　

	Notes
	If the super state State1 used in the example above is a virtual state that does not exist in reality and was created in order to use the internal transition or unify transition lines, it is classified in the state referred to as virtual state or "pseudo state" expressed in UML.
This state only unifies the transition lines, so it does not have a state action inside.

	See also
	MISRA AC SLSF 053F

	Last Change
	V4.0

[bookmark: _Toc383797588][bookmark: _Toc383803243][bookmark: _Toc383797589][bookmark: _Toc383803244][bookmark: _Toc383803285][bookmark: _Toc420056473][bookmark: _Toc345416680][bookmark: _Toc353263179][bookmark: _Toc359428614]jc_0762: Prohibited combination of state action and Flow Chart
	ID: Title
	jc_0762: Prohibited combination of state action and Flow Chart

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	State actions within states (starts with entry, during) and flow Chart statements should not be used in combination.

Note
The execution order is hard to understand in writing methods that use the two combined, and the behavior will not be understood intuitively. It should be unified to either a state action or Flow Chart statement.
　
	Correct:

	Incorrect:

	See also
	

	Last Change
	V4.0

[bookmark: _Toc383797631][bookmark: _Toc383803286][bookmark: _Toc383803322][bookmark: _Toc420056474][bookmark: _Toc353266000][bookmark: _Toc359428616]jc_0763: Usage restrictions of multiple internal transitions
	ID: Title
	jc_0763: Usage restrictions of multiple internal transitions

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Multiple internal transitions should not be used within a single state.

Correct:
　

　

Incorrect:
　

　

	See also
	MISRA AC SLSF 043F

	Last Change
	V4.0

[bookmark: _Toc383797668][bookmark: _Toc383803323][bookmark: _Toc383803360][bookmark: _Toc420056475]jc_0761: Statement method when using multiple internal transitions
	ID: Title
	jc_0761: Statement method when using multiple internal transitions

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	If multiple internal transitions are described out of necessity regarding an internal transition within a single state, they should be listed from top to bottom according to the order of execution of the internal transitions.

Correct:

Incorrect:

	See also
	

	Notes
	jc_0763: In the usage restrictions of multiple internal transitions, it is recommended that multiple internal transitions are not used. However, in some cases, using multiple internal transitions can prevent transition lines from crossing and simply represent state transitions. If multiple internal transitions will be used in such cases, use them in compliance with this rule.

	Last Change
	V4.0

[bookmark: _Toc362010130][bookmark: _Toc362010550][bookmark: _Toc362020845][bookmark: _Toc362344585][bookmark: _Toc362377498]
[bookmark: _Toc381885146][bookmark: _Toc383803361][bookmark: _Ref412556124][bookmark: _Ref412556128][bookmark: _Toc420056476][bookmark: _Toc359428617]Flow Chart foundation
[bookmark: _Toc381885147][bookmark: _Toc383803362][bookmark: _Toc420056477]db_0132: Transitions in Flow Charts	
	ID: Title
	db_0132: Transitions in Flow Charts

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	1. The following rules apply to transitions in Flow Charts:
· Conditions are drawn on the horizontal.
· Actions are drawn on the vertical.

2. Transitions labels of Flow Charts use a condition, condition action,
or an empty transition. (Transition action must not be used in flow charts)

Example
Transition with condition:

Transition with condition action:

Empty transition:

Exception
5.7.4 db_0135: Flow Chart patterns for loop constructs

	Notes

	

	Last Change
	V4.0

[bookmark: _Toc383797708][bookmark: _Toc383803363][bookmark: _Toc383797709][bookmark: _Toc383803364][bookmark: _Toc383803403][bookmark: _Toc420056478][bookmark: _Toc153083742][bookmark: _Toc151543975][bookmark: _Toc156018136][bookmark: _Toc156895575][bookmark: _Toc160418041][bookmark: _Toc172703105]db_0134: Flow Chart patterns for If constructs
	ID: Title
	db_0134: Flow Chart patterns for If constructs

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	jc_0742: Guidelines for writing Boolean operations to condition labels
jc_0743: Guidelines for writing condition actions

	Description
	The following patterns are used for If constructs within Flow Charts:
	Functionality
	Flow Chart Pattern

	IF-THEN construct

if (condition){
 action;
}
	

	IF-THEN-ELSE construct

if (condition) {
 action1;
}
else {
 action2;
}
	

	IF-THEN-ELSE-IF construct

if (condition1) {
 action1;
}
else if (condition2) {
 action2;
}
else if (condition3) {
 action3;
}
else {
 action4;
}
	

	Cascade of IF-THEN construct

if (condition1) {
 action1;
 if (condition2) {
 action2;
 if (condition3) {
 action3;
 }
 }
}
	

	Last Change
	V1.0

[bookmark: _Toc383797749][bookmark: _Toc383803404][bookmark: _db_0149:_Flowchart_patterns_for_con][bookmark: _db_0149:_Flowchart_patterns][bookmark: _Toc383803452][bookmark: _Toc420056479][bookmark: _Toc153083743][bookmark: _Toc151543976][bookmark: _Toc156018137][bookmark: _Toc156895576][bookmark: _Toc160418042][bookmark: _Toc172703106]db_0159: Flowchart patterns for case constructs
	ID: Title
	db_0159: Flowchart patterns for case constructs

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	jc_0742: Guidelines for writing Boolean operations to condition labels
jc_0743: Guidelines for writing condition actions

	Description
	The following patterns must be used for case constructs within Flow Charts:
	Functionality
	Flow Chart Pattern

	CASE construct with exclusive selection

selection = ...;
switch (selection) {
 case 1:
 action1;
 break;
 case 2:
 action2;
 break;
 case 3:
 action3;
 break;
 default:
 action4;
}
	

	CASE construct with exclusive conditions

c1 = condition1;
c2 = condition2;
c3 = condition3;
if (c1 && ! c2 && ! c3) {
 action1;
}
elseif (! c1 && c2 && ! c3) {
 action2;
}
elseif (! c1 && ! c2 && c3) {
 action3;
}
else {
 action4;
}
	

	Last Change
	V1.0

[bookmark: _Toc383797798][bookmark: _Toc383803453][bookmark: _Toc383803490][bookmark: _Ref412562648][bookmark: _Ref412562654][bookmark: _Toc420056480][bookmark: _Toc153083744][bookmark: _Toc151543977][bookmark: _Toc156018138][bookmark: _Toc156895577][bookmark: _Toc160418043][bookmark: _Toc172703107]db_0135: Flow Chart patterns for loop constructs
	ID: Title
	db_0135: Flow Chart patterns for loop constructs

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	jc_0742: Guidelines for writing Boolean operations in condition labels
jc_0743: Guidelines for writing condition actions

	Description
	The following patterns must be used to create Loops within Flow Charts.
	Functionality
	Flow Chart Pattern

	FOR LOOP construct

for (index=0;index<number_of_loops;index++) {
 action;
}
	

	WHILE LOOP construct

while (condition) {
 action;
}
	

	DO WHILE LOOP construct

do {
 action;
}
while (condition);
	

	Last Change
	V1.0

[bookmark: _Toc420056481]jc_0773: Unconditional transition of a flow chart
	ID: Title
	jc_0773: Unconditional transition of a flow chart

	Priority
	Strongly Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	· All the flow charts, a graphical function, "Unconditional transition " when not fulfilling conditions is required for it. It is for preventing backtracking.
· The priority of unconditional transition is set as the last.

In order to prevent backtrack, all flowchart and graphycal function provide unconditional taransition which will not meet all conditions. (Use complex conditions in one place)

· Priority of unconditional transition will be set at the very end.

[bookmark: OLE_LINK21]Correct:

Incorrect:
It does not have transition line of "Unconditional transition".

Correct:
When a complex condition is summarized to one.

Incorrect:
There are no unconditional transition in a central junction.

When the flow chart which outputs one by C1 == ON && C2 == ON is drawn as mentioned above.
The high skill engineer, C1 performs out=0, when C2 is OFF in ON, and he understands that processing is performed to a termination.
However, it is not easy to understand the course to a termination at a glance.
In this case, in order to avoid misunderstanding, following either is coped with and it leads to a termination.
 "A complex condition is bundled to one."
 "Unconditional changes are certainly prepared."

If you can understand Stateflow semantics,
When you drarw above chart which output 1 with C1 == ON && C2 == ON, you will know that the process is ran to the end when execute out=0. However, it is difficult to understand the path to the end at a glance.
In order to avoid misunderstanding, connecting to the end by using the methods below.

· Bundle complex conditions.
· Provide unconditional transition

	Notes
	This is a backtracking prevention rule of a flow chart.
Expression a flow chart "suspends processing in the middle of a junction in the case of condition disagreement" unlike condition changes is not used.
Wire connection is carried out using unconditional transition array so that the last of processing may become clear, so that it may certainly flow to a termination.

This is the rule to prevent backtrack of flowchart. This is different from conditional transition, which will not use the expression like “Stop the process in the middle of the junction in the case of mismatch conditions.” Wired it so that the end of the process becomes clear by using undonsitional transition line to flow to the end.

	See also
	

	Last Change
	V4.00

[bookmark: _Toc381885153][bookmark: _Toc383803491][bookmark: _Toc420056482][bookmark: _Toc381605599][bookmark: _Toc381952965]Flow Chart details
[bookmark: _Toc383797838][bookmark: _Toc383803493][bookmark: _Toc383797839][bookmark: _Toc383803494][bookmark: _Toc380046552][bookmark: _Toc380046898][bookmark: _Toc380047242][bookmark: _Toc380138423][bookmark: _Toc380506477][bookmark: _Toc381605602][bookmark: _Toc383016642][bookmark: _Toc383019176][bookmark: _Toc383076515][bookmark: _Toc381885156][bookmark: _Toc383803537][bookmark: _Toc420056483][bookmark: _Toc345416682][bookmark: _Toc353263181][bookmark: _Toc359428629]jc_0774: Comments on unconditional transition which has no process
	ID: Title
	jc_0774: Comments on unconditional transition which has no process

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	jc_0773: Unconditional transition of a flow chart

	Description
	When unconditional transition which has no action is used as exceptional processing in case no condition is met, comments must be described to show intentionally no process is described

Correct:
If there is unconditional transition which has no process, comment must be described.

Incorrect:
Although there is unconditional transition, no comment is described.
It is difficult to understand whether unconditional transition was intentionally described or description of conditions and actions was forgotten.

	Notes
	

	See also
	

	Last Change
	V4.0

[bookmark: _Toc359428630]
[bookmark: _Toc381885157][bookmark: _Toc383803538][bookmark: _Toc420056484]jc_0511: Setting the return value from a graphical function
	ID: Title
	jc_0511: Setting the return value from a graphical function

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	R2008a and later

	Prerequisites
	db_0134: Flow Chart patterns for If constructs

	Description
	The return value from a graphical function must be set in only one place.
	Correct:
Return value A is set in one place.

	Incorrect:
Return value A is set in multiple places.

	Notes
	Regarding R2007b and earlier, this rule has influence to code generation.
If incorrect pattern is used, multiple return sentences are generated.
This is violation to MISCA-C 1998 rule 82 and MISRA-C2004 rule 14.7.
If earlier versions are adopted, please operate this rule as Mandatory as same as Ver2.0.
In R2008a and later, C codes which has no violation to MISRA rules are generated.
However, for the purpose of getting efficient code, in some cases, it is necessary that function 　 setting of graphical functions are set not to "auto","inline" but to "function".
In current versions of MATLAB, please operate this rule in order to unify appearances of graphical functions.

	Last Change
	V4.0

[bookmark: _Toc383797884][bookmark: _Toc383803539][bookmark: _Toc381885158][bookmark: _Toc383803583][bookmark: _Toc420056485][bookmark: _Toc353266010][bookmark: _Toc359428631]jc_0775: Number of terminal junctions in Flow Charts
	ID: Title
	jc_0775: Number of terminal junctions in Flow Charts

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	db_0134: Flow Chart patterns for If constructs

	Description
	A unique terminal junction must exist in all graphical functions and Flow Charts described in states.

Correct:

 　
Incorrect:
　

	See also
	MISRA AC SLSF 053J

	Last Change
	V4.0

[bookmark: _Toc383797929][bookmark: _Toc383803584][bookmark: _Toc381885159][bookmark: _Toc383803617][bookmark: _Toc420056486][bookmark: _Toc353266011][bookmark: _Toc359428632]jc_0776: Number of inputs to the terminal junction of Flow Charts
	ID: Title
	jc_0776: Number of inputs to the terminal junction of Flow Charts

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	jc_0775: Number of terminal junctions in Flow Charts

	Description
	In all graphical functions and Flow Charts described in states, the number of transition lines inputted in terminal junctions within all Flow Charts and graphical functions should be one.

Correct:
 　

Incorrect:
　

The purpose of this rule is to explicitly indicate the point of completion.

	See also
	MISRA AC SLSF 053K

	Last Change
	V4.0

[bookmark: _Toc381885160][bookmark: _Toc383803618][bookmark: _Toc420056487][bookmark: _Toc359428633]Event
[bookmark: _Toc381885161][bookmark: _Toc383803619][bookmark: _Toc420056488]db_0126: Scope of events
	ID: Title
	db_0126: Scope of events

	Priority
	Mandatory

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisites
	

	Description
	The following rules apply to events in Stateflow:
· All events of a Chart must be defined on the chart level or lower.
· There is no event on the machine level (that is, there is no interaction with local events between different charts).

	Notes
	It becomes the compilation error after R2009b.

	Last Change
	V4.0

[bookmark: _Toc383797965][bookmark: _Toc383803620][bookmark: _Toc383797966][bookmark: _Toc383803621][bookmark: _Toc381885162][bookmark: _Toc383803646][bookmark: _Toc420056489][bookmark: _Toc359428634]jc_0780: Usage restrictions of events
	ID: Title
	jc_0780: Usage restrictions of events

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	db_0126: Guidelines for defining events

	Description
	Events should not be used for anything other than calls in the Function Call Subsystem.
(State transitions by events should not be used.)

Correct:

	Notes
	If state transitions by events are used without fully understanding their operation, there are cases in which processing is unintentionally performed by recursive function and processing is performed twice in one cycle.

	See also
	MISRA AC SLSF　047A

	Last Change
	V4.0

[bookmark: _Toc381885163][bookmark: _Toc383803647][bookmark: _Toc420056490]jc_0781: Function Call from Stateflow
	ID: Title
	jc_0781: Function Call from Stateflow

	Priority
	Recommended

	Scope
	JMAAB

	MATLAB
Version
	All

	Prerequisites
	db_0126: Guidelines for defining events
jc_0780: Usage restrictions of events
na_0006: Guidelines for mixed use of Simulink and Stateflow

	Description
	If the "state exists" within the Function Call Subsystem of the call target and a "reset" of the state is required when the state of the caller becomes inactive, a bind action should be described by the caller.

	See also
	

	Last Change
	V4.0

[bookmark: _Toc381885164][bookmark: _Toc383803680][bookmark: _Toc420056491][bookmark: _Toc359428635]jm_0012: Event broadcasts
	ID: Title
	jm_0012: Event broadcasts

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	db_0126: Guidelines for defining events

	Description
	The following rules apply to event broadcasts in Stateflow:
· Directed event broadcasts are the only type of event broadcasts allowed.
· The send syntax or qualified event names are used to direct the event to a particular state.
· Multiple send statements should be used to direct an event to more than one state.

Correct: Example using the send syntax:

Correct: Example using qualified event names:

Incorrect: Use of a non-directed event

	Last Change
	V2.2

[bookmark: _Toc359428638]
[bookmark: _Toc383803681][bookmark: _Toc420056492]Functions within Stateflow
[bookmark: _Toc381885166][bookmark: _Toc383803682][bookmark: _Toc420056493]na_0041: Selection of function type
	ID: Title
	na_0041: Selection of function type

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	2010b and later

	Prerequisites
	

	Description
	The type of functions to be used should be selected depending on the required processing.
· Graphical functions
· If / then / else logic
· Simulink functions
· Transfer functions
· Integrators
· Table look-ups
· MATLAB functions
· Complex equations
· If / then / else logic

	Notes
	Stateflow supports the following three types of functions:
· Graphical functions
· Simulink functions
· MATLAB functions

	Last Change
	V3.0

[bookmark: _Toc383798028][bookmark: _Toc383803683][bookmark: _Toc383798029][bookmark: _Toc383803684][bookmark: _Toc381885167][bookmark: _Toc383803724][bookmark: _Toc420056494]na_0042: Location of functions
	ID: Title
	na_0042: Location of functions

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	2010b and later

	Prerequisites
	

	Description
	When deciding whether to embed Simulink functions inside a Stateflow chart, the following conditions make embedding the preferred option. If the Simulink functions:
· Use only local Chart data
or
· Use a mixture of local Chart data and inputs from Simulink
or
· Are called from multiple locations within the chart
or
· Are not called every time step

Incorrect

correct

	Last Change
	V3.0

[bookmark: _Toc369077546][bookmark: _Toc369079030][bookmark: _Toc369079326][bookmark: _Toc369612126][bookmark: _Toc369615989][bookmark: _Toc369620034][bookmark: _Toc369792909][bookmark: _Toc369793315][bookmark: _Toc371495126][bookmark: _Toc371495590][bookmark: _Toc371496285][bookmark: _Toc371496632][bookmark: _Toc371497258][bookmark: _Toc371500033][bookmark: _Toc373138579][bookmark: _Toc373139014][bookmark: _Toc373139392][bookmark: _Toc373139771][bookmark: _Toc373237144][bookmark: _Toc373242080][bookmark: _Toc375228866][bookmark: _Toc375229671][bookmark: _Toc375230477][bookmark: _Toc375233558][bookmark: _Toc375296408][bookmark: _Toc375296845][bookmark: _Toc375297280][bookmark: _Toc375298951][bookmark: _Toc375299599][bookmark: _Toc375300032][bookmark: _Toc375558700][bookmark: _Toc369077547][bookmark: _Toc369079031][bookmark: _Toc369079327][bookmark: _Toc369612127][bookmark: _Toc369615990][bookmark: _Toc369620035][bookmark: _Toc369792910][bookmark: _Toc369793316][bookmark: _Toc371495127][bookmark: _Toc371495591][bookmark: _Toc371496286][bookmark: _Toc371496633][bookmark: _Toc371497259][bookmark: _Toc371500034][bookmark: _Toc373138580][bookmark: _Toc373139015][bookmark: _Toc373139393][bookmark: _Toc373139772][bookmark: _Toc373237145][bookmark: _Toc373242081][bookmark: _Toc375228867][bookmark: _Toc375229672][bookmark: _Toc375230478][bookmark: _Toc375233559][bookmark: _Toc375296409][bookmark: _Toc375296846][bookmark: _Toc375297281][bookmark: _Toc375298952][bookmark: _Toc375299600][bookmark: _Toc375300033][bookmark: _Toc375558701]
[bookmark: _Toc381885168][bookmark: _Toc383803725][bookmark: _Toc420056495][bookmark: _Toc359428641][bookmark: OLE_LINK45]na_0039: Use of Simulink in Stateflow charts
	ID: Title
	na_0039: Use of Simulink in Stateflow charts

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	2010b and later

	Prerequisites
	

	Description
	The use of Stateflow charts is prohibited in Simulink functions that are included in Stateflow charts.

Incorrect:

	Last Change
	V3.0

[bookmark: _Toc383798071][bookmark: _Toc383803726][bookmark: _Toc381885120][bookmark: _Toc383803763][bookmark: _Toc420056496][bookmark: _Toc359428593][bookmark: _Toc362020822]db_0127: MATLAB commands in Stateflow
	ID: Title
	db_0127: MATLAB commands in Stateflow

	Priority
	Mandatory

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	Do not use the .ml syntax in Stateflow charts.
Individual companies should decide on the use of MATLAB functions.
If they are permitted, then MATLAB command should only be accessed through the MATLAB function .

Correct:

Incorrect:

	Notes
	Code generation supports a limited subset of the MATLAB functions.
For a complete list of the support function, see the "MathWorks®" documentation.
Corresponding functions are described in the following two places.
・Functions Supported for Code Generation — Alphabetical List
(Functions Supported for Code Generation — Alphabetical List)
http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-generation-alphabetical-list.html
・Functions Supported for Code Generation — Categorical List
(Functions Supported for Code Generation — Categorical List)
http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-generation--categorical-list.html

	Last Change
	V2.2

[bookmark: _Toc358895588][bookmark: _Toc359428642]
[bookmark: _Toc381885169][bookmark: _Toc383803764][bookmark: _Toc420056497]Miscellaneous: Variants, enumerated type, MATLAB functions
[bookmark: _Toc381885170][bookmark: _Toc383803765][bookmark: _Toc420056498]Variant Subsystem
[bookmark: _Toc381885171][bookmark: _Toc383803766][bookmark: _Toc420056499]na_0037: Use of single variable variant conditionals
	ID: Title
	na_0037: Use of single variable variant conditionals

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Versions
	ALL

	Prerequisite
	

	Description
	Variant condition equations must be composed from a compound condition formed from a single variable or a single condition formed from multiple variables.
The provided variant is the exception to the second regulation.

Correct: Various variables (INLINE/FCNCTION that has one more condition per line)
Correct: A compound condition formed from a single variable
Incorrect: Compound condition formed from various variables

	Notes
	The usage of enumerated type variables is recommended in a condition equation. This example used numerical values in the screenshot to increase the readability.

	Related
	

	Last Change
	V3.0

[bookmark: _Toc383798112][bookmark: _Toc383803767][bookmark: _Toc383798113][bookmark: _Toc383803768][bookmark: _Toc383798114][bookmark: _Toc383803769][bookmark: _Toc381885172][bookmark: _Toc383803804][bookmark: _Toc420056500][bookmark: _Toc359428470]na_0020: Number of inputs to variant subsystems
	ID: Title
	na_0020: Number of inputs to variant subsystems

	Priority
	Mandatory

	Scope
	MAAB

	MATLAB
Version
	R2013b and earlier

	Prerequisite
	db_0081: Unconnected signals, block inputs and block outputs

	Description
	In Simulink, the same number needs to be inputted into Model Variants and Variant Subsystem that will be used in the variant system. However, this does not necessary mean that the variant subsytem will use all the input. Please connect the unused input with Terminator blocks to conduct termination processing.

	Notes
	Model Variants: Includes a model into another model as a block.
Variant Subsytem: Represents subsytem that has several subsystems.

A new function was added by R2014a.
Even if the number of the ports is different, it is available.

	See Also
	

	Last Change
	V4.0

[bookmark: _Toc381885173][bookmark: _Toc383803805][bookmark: _Toc420056501][bookmark: OLE_LINK16]na_0036: Default variant
	ID: Title
	na_0036: Default variant

	Priority
	Recommended

	Scope
	NAMAAB

	MATLAB Version
	ALL

	Prerequisite
	na_0037: Use of single variable variant conditionals

	Description
	Model Variants and Variant Subsytem are all constructed so that one subsytem will always be selected. This can be achieved with one of the following methods.
· A default variant is used.
· The condition will be set so that all values that conditional variables may take will be covered. For example, a condition will be set for a situation in which the boolean-type variable's value is true and when it is false.

Correct:
Correct: Let's assume that FUNC and INLINE are boolean types.
Incorrect: If FUNC is neither 1 nor 2, an active subsystem will not exist.

	Notes
	

	Last Change
	V3.0

[bookmark: _Toc381885174][bookmark: _Toc383803806][bookmark: _Toc420056502]Enumerated type data
[bookmark: _Toc381885175][bookmark: _Toc383803807][bookmark: _Toc420056503]na_0033: Enumerated Types Usage
	ID: Title
	na_0033: Enumerated Types Usage

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	R2010b and later

	Prerequisite
	na_0002: Basic logical operation and the appropriate implementation of arithmetic operations

	Description
	Signals and parameters serve as a finite set of integer values. If the values of these sequences correspond to a group formed from items with names, use the data of an enumerate type.

Example: Usage example of red, yellow, and blue in a traffic light.
Correct:

Incorrect:

Red is used as a regular unit 8 value.

	Notes
	4 byte will be used for the enumerate type in the C-code in the standard regulation.

	See Also
	

	Last Change
	V3.0

[bookmark: _Toc381885176][bookmark: _Toc383803808][bookmark: _Toc420056504][bookmark: _Toc359428644]na_0031: Definition of default enumerated value
	ID: Title
	na_0031: Definition of default enumerated value

	Priority
	Recommended

	Scope
	MAAB

	MATLAB
Version
	R2010b and later

	Prerequisite
	

	Description
	Default value of an enumerated type (getDefaultValue) always needs to be stipulated explicitly.

Correct:
classdef(Enumeration) BasicColors < Simulink.IntEnumType
 enumeration
 Red(0)
 Yellow(1)
 Blue(2)
 end
 methods (Static = true)
 function retVal = getDefaultValue()
 retVal = BasicColors.Red;
 end
 end
end

Incorrect:
classdef(Enumeration) BasicColors_Violation < Simulink.IntEnumType
 enumeration
 Red(0)
 Yellow(1)
 Blue(2)
 end
end

	Notes
	When the default value is not stipulated when using getDefaultValu, the text listed in the enumeration will be used as the initial value.
For example, if "Yellow" is written first like in the below example, "Yellow" will be used as the initial value.
 enumeration
 Yellow(1)
 Red(0)
 Blue(2)
 end

	Last Change
	V3.0

[bookmark: _Toc383803809][bookmark: _Toc420056505][bookmark: _Toc359428645]
MATLAB functions
[bookmark: _Toc381885178][bookmark: _Toc383803810][bookmark: _Toc420056506]na_0018: Number of nested if/else and case statement
	ID: Title
	na_0018: Number of nested if/else and case statement

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisite
	

	Description
	The number of nests in if/else and case statements need to be restricted.
Example: Say, the number hierarchies was up to 3 hierarchy.

	See Also
	Orion_jr_0002: The number of if/else and case statements block nests

	Last Change
	V3.0

[bookmark: _Toc381885179][bookmark: _Toc383803837][bookmark: _Toc420056507][bookmark: _Toc235438769][bookmark: _Toc246228406][bookmark: _Toc294875335][bookmark: _Toc359428649]na_0025: MATLAB function header
	ID: Title
	na_0025: MATLAB function header

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisite
	

	Description
	MATLAB functions need to have a header that explains such functions.
For example, the following types of information will be entered in a header.
Item example:
・Function name
・Explanation of the function
・Prerequisite and restriction
・Modified points from the previous version
・List of input and output

Implementation example:

	See Also
	Orion_jh_0073: eML header version

	Last Change
	V3.0

[bookmark: _Toc383798183][bookmark: _Toc383803838][bookmark: _Toc420056508][bookmark: _Toc235438757][bookmark: _Toc246228394][bookmark: _Toc294875323][bookmark: _Toc359428651]na_0034: MATLAB Function block input/output settings
	ID: Title
	na_0034: MATLAB Function block input/output settings

	Priority
	Strongly Recommended

	Scope
	NAMAAB

	MATLAB
Version
	ALL

	Prerequisite
	

	Description
	It is required to explicitly stipulate the data type at the top of the model explorer or the function for all input and output toward MATLAB function block

	Notes
	

	See Also
	Orion_jh_0063: Input and output setting of eML block

	Last Change
	V4.0

[bookmark: _Toc383798220][bookmark: _Toc383803875][bookmark: _Toc381885181][bookmark: _Toc383803922][bookmark: _Toc420056509][bookmark: _Toc235438768][bookmark: _Toc246228405][bookmark: _Toc294875334][bookmark: _Toc359428652]na_0024: Global variable
	ID: Title
	na_0024: Global variable

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisite
	

	Description
	It is recommended to access the signal wire with common data between MATLAB functions.
For example, if one side only merely consult the signal value, the connection is made by using the signal line without using the data store memory.
In the following cases, it is possible to share the signal using a data store memory without connecting via signal line.
· It is required to share a specific signal, such as conducting writing updates toward the same signals within various MATLAB functions.

Example:
In this example, the same data store memory (ErrorFlag_DataStore) is shared between two different MATLAB functions.

	See Also
	Orion_ek_0003: Global variable

	Last Change
	V4.0

[bookmark: _Toc383798268][bookmark: _Toc383803923][bookmark: _Toc420056510][bookmark: _Toc235438763][bookmark: _Toc246228400][bookmark: _Toc294875329][bookmark: _Toc359428654]na_0022: Recommended patterns for Switch / Case statements
	ID: Title
	na_0022: Recommended patterns for Switch / Case statements

	Priority
	Mandatory

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisite
	

	Description
	Switch / Case statements must use constant values for the “Case” arguments. Input variables cannot be used in the “Case” arguments

Correct:

Incorrect:

	See Also
	Orion_jh_0026: Switch/Case statement

	Last Change
	V3.0

[bookmark: _Toc383798313][bookmark: _Toc383803968][bookmark: _Toc381885185][bookmark: _Toc383804002][bookmark: _Toc420056511][bookmark: _Toc294875318][bookmark: _Toc359428656]na_0016: Source lines of MATLAB Functions
	ID: Title
	na_0016: Source lines of MATLAB Functions

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisite
	

	Description
	The length of MATLAB functions should be limited, with a recommended limit of 60 lines of code. This restriction applies to MATLAB Functions that reside in the Simulink block diagram and external MATLAB files with a .m extension.

If sub-functions are used, they may use additional lines of code. Also limit the length of sub-functions to 60 lines of code.

	See Also
	Orion_im_0008: Source line of eML

	Last Change
	V3.0

[bookmark: _Toc383798348][bookmark: _Toc383804003][bookmark: _Toc381885186][bookmark: _Toc383804032][bookmark: _Toc420056512][bookmark: _Toc235438755][bookmark: _Toc246228391][bookmark: _Toc294875319][bookmark: _Toc359428657]na_0017: Number of called function levels
	ID: Title
	na_0017: Number of called function levels

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisite
	

	Description
	The number of levels of sub-functions should be limited, typically to 3 levels. MATLAB function blocks that resides at the Simulink block diagram level counts as the first level, unless it is simply a wrapper for an external MATLAB file with a .m extension.

This includes functions that are defined within the MATLAB block and those in separate .m files.

	Notes
	Standard utility functions, such as built in functions like sqrt or log, are not included in the number of levels. Likewise, commonly used custom utility functions can be excluded from the number of levels.

	See Also
	Orion_im_0009: Hierarchy number of function to be called out

	Last Change
	V3.0

[bookmark: _Toc383798378][bookmark: _Toc383804033][bookmark: _Toc420056513][bookmark: _Toc235438761][bookmark: _Toc246228398][bookmark: _Toc294875327][bookmark: _Toc359428658]na_0021: Strings
	ID: Title
	na_0021: Strings

	Priority
	Strongly Recommended

	Scope
	MAAB

	MATLAB
Version
	ALL

	Prerequisite
	

	Description
	The use of strings is not recommended. MATLAB Functions store strings as character arrays. The arrays cannot be resized to accommodate a string value of different length, due to lack of dynamic memory allocation. Stings are not a supported data type in Simulink, so MATLAB Function blocks cannot pass the string data outside the block.

For example, the following code will produce an error:

name = ‘rate_error’; %this creates a 1 x 10 character array
name = ‘x_rate_error’; %this causes an error because the array size is now 1 x 12, not 1 x 10

	Notes
	If the string is being used for switch / case behavior, consider using enumerated data types.

	See Also
	Orion_jh_0024: Character string

	Last Change
	V3.0

[bookmark: _Toc375228889][bookmark: _Toc375229694][bookmark: _Toc375230500][bookmark: _Toc375228890][bookmark: _Toc375229695][bookmark: _Toc375230501][bookmark: _Toc375228891][bookmark: _Toc375229696][bookmark: _Toc375230502][bookmark: _Toc375228892][bookmark: _Toc375229697][bookmark: _Toc375230503][bookmark: _Toc375228893][bookmark: _Toc375229698][bookmark: _Toc375230504][bookmark: _Toc375228894][bookmark: _Toc375229699][bookmark: _Toc375230505][bookmark: _Toc375228895][bookmark: _Toc375229700][bookmark: _Toc375230506][bookmark: _Toc375228896][bookmark: _Toc375229701][bookmark: _Toc375230507][bookmark: _Toc375228897][bookmark: _Toc375229702][bookmark: _Toc375230508][bookmark: _Toc375228898][bookmark: _Toc375229703][bookmark: _Toc375230509][bookmark: _Toc375228899][bookmark: _Toc375229704][bookmark: _Toc375230510][bookmark: _Toc375228900][bookmark: _Toc375229705][bookmark: _Toc375230511][bookmark: _Toc375228901][bookmark: _Toc375229706][bookmark: _Toc375230512][bookmark: _Toc375228902][bookmark: _Toc375229707][bookmark: _Toc375230513][bookmark: _Toc375228903][bookmark: _Toc375229708][bookmark: _Toc375230514][bookmark: _Toc375228904][bookmark: _Toc375229709][bookmark: _Toc375230515][bookmark: _Toc375228905][bookmark: _Toc375229710][bookmark: _Toc375230516][bookmark: _Toc375228906][bookmark: _Toc375229711][bookmark: _Toc375230517][bookmark: _Toc375228907][bookmark: _Toc375229712][bookmark: _Toc375230518][bookmark: _Toc375228908][bookmark: _Toc375229713][bookmark: _Toc375230519][bookmark: _Toc375228909][bookmark: _Toc375229714][bookmark: _Toc375230520][bookmark: _Toc375228910][bookmark: _Toc375229715][bookmark: _Toc375230521][bookmark: _Toc375228911][bookmark: _Toc375229716][bookmark: _Toc375230522][bookmark: _Toc375228912][bookmark: _Toc375229717][bookmark: _Toc375230523][bookmark: _Toc375228913][bookmark: _Toc375229718][bookmark: _Toc375230524][bookmark: _Toc375228914][bookmark: _Toc375229719][bookmark: _Toc375230525][bookmark: _Toc375228928][bookmark: _Toc375229733][bookmark: _Toc375230539][bookmark: _Toc375228929][bookmark: _Toc375229734][bookmark: _Toc375230540][bookmark: _Toc375228930][bookmark: _Toc375229735][bookmark: _Toc375230541][bookmark: _Toc375228932][bookmark: _Toc375229737][bookmark: _Toc375230543][bookmark: _Toc375228933][bookmark: _Toc375229738][bookmark: _Toc375230544][bookmark: _Toc375228934][bookmark: _Toc375229739][bookmark: _Toc375230545][bookmark: _Toc375228935][bookmark: _Toc375229740][bookmark: _Toc375230546][bookmark: _Toc375228936][bookmark: _Toc375229741][bookmark: _Toc375230547][bookmark: _Toc375228937][bookmark: _Toc375229742][bookmark: _Toc375230548][bookmark: _Toc375228938][bookmark: _Toc375229743][bookmark: _Toc375230549][bookmark: _Toc375228952][bookmark: _Toc375229757][bookmark: _Toc375230563][bookmark: _Toc375228953][bookmark: _Toc375229758][bookmark: _Toc375230564][bookmark: _Toc375228954][bookmark: _Toc375229759][bookmark: _Toc375230565][bookmark: _Toc375228955][bookmark: _Toc375229760][bookmark: _Toc375230566][bookmark: _na_0006:_Guidelines_for][bookmark: _jc_0341:_Data_flow][bookmark: _Toc375228956][bookmark: _Toc375229761][bookmark: _Toc375230567][bookmark: _Toc375228970][bookmark: _Toc375229775][bookmark: _Toc375230581][bookmark: _Toc375228971][bookmark: _Toc375229776][bookmark: _Toc375230582][bookmark: _Toc375228974][bookmark: _Toc375229779][bookmark: _Toc375230585][bookmark: _Toc375228977][bookmark: _Toc375229782][bookmark: _Toc375230588][bookmark: _Toc375228980][bookmark: _Toc375229785][bookmark: _Toc375230591][bookmark: _Toc375228983][bookmark: _Toc375229788][bookmark: _Toc375230594][bookmark: _Toc375228986][bookmark: _Toc375229791][bookmark: _Toc375230597][bookmark: _Toc375228989][bookmark: _Toc375229794][bookmark: _Toc375230600][bookmark: _Toc375228997][bookmark: _Toc375229802][bookmark: _Toc375230608][bookmark: _Toc375229003][bookmark: _Toc375229808][bookmark: _Toc375230614][bookmark: _Toc375229004][bookmark: _Toc375229809][bookmark: _Toc375230615][bookmark: _Toc375229005][bookmark: _Toc375229810][bookmark: _Toc375230616][bookmark: _Toc375229006][bookmark: _Toc375229811][bookmark: _Toc375230617][bookmark: _Toc375229007][bookmark: _Toc375229812][bookmark: _Toc375230618][bookmark: _Toc375229008][bookmark: _Toc375229813][bookmark: _Toc375230619][bookmark: _Toc375229009][bookmark: _Toc375229814][bookmark: _Toc375230620][bookmark: _Toc375229010][bookmark: _Toc375229815][bookmark: _Toc375230621][bookmark: _Toc375229011][bookmark: _Toc375229816][bookmark: _Toc375230622][bookmark: _Toc375229020][bookmark: _Toc375229825][bookmark: _Toc375230631][bookmark: _Toc375229029][bookmark: _Toc375229834][bookmark: _Toc375230640][bookmark: _Toc375229033][bookmark: _Toc375229838][bookmark: _Toc375230644][bookmark: _Toc375229037][bookmark: _Toc375229842][bookmark: _Toc375230648][bookmark: _Toc375229041][bookmark: _Toc375229846][bookmark: _Toc375230652][bookmark: _Toc375229042][bookmark: _Toc375229847][bookmark: _Toc375230653][bookmark: _Toc375229043][bookmark: _Toc375229848][bookmark: _Toc375230654][bookmark: _Toc375229044][bookmark: _Toc375229849][bookmark: _Toc375230655][bookmark: _Toc375229045][bookmark: _Toc375229850][bookmark: _Toc375230656][bookmark: _Toc375229046][bookmark: _Toc375229851][bookmark: _Toc375230657][bookmark: _Toc375229047][bookmark: _Toc375229852][bookmark: _Toc375230658][bookmark: _Toc375229048][bookmark: _Toc375229853][bookmark: _Toc375230659][bookmark: _Toc375229049][bookmark: _Toc375229854][bookmark: _Toc375230660][bookmark: _Toc375229050][bookmark: _Toc375229855][bookmark: _Toc375230661][bookmark: _Toc375229051][bookmark: _Toc375229856][bookmark: _Toc375230662][bookmark: _Toc375229052][bookmark: _Toc375229857][bookmark: _Toc375230663][bookmark: _Toc375229053][bookmark: _Toc375229858][bookmark: _Toc375230664][bookmark: _Toc375229054][bookmark: _Toc375229859][bookmark: _Toc375230665][bookmark: _Toc375229055][bookmark: _Toc375229860][bookmark: _Toc375230666][bookmark: _Toc375229056][bookmark: _Toc375229861][bookmark: _Toc375230667][bookmark: _Toc375229057][bookmark: _Toc375229862][bookmark: _Toc375230668][bookmark: _Toc375229058][bookmark: _Toc375229863][bookmark: _Toc375230669][bookmark: _Toc375229059][bookmark: _Toc375229864][bookmark: _Toc375230670][bookmark: _Toc375229060][bookmark: _Toc375229865][bookmark: _Toc375230671][bookmark: _Toc375229061][bookmark: _Toc375229866][bookmark: _Toc375230672][bookmark: _Toc375229062][bookmark: _Toc375229867][bookmark: _Toc375230673][bookmark: _Toc375229063][bookmark: _Toc375229868][bookmark: _Toc375230674][bookmark: _Toc375229064][bookmark: _Toc375229869][bookmark: _Toc375230675][bookmark: _Toc375229065][bookmark: _Toc375229870][bookmark: _Toc375230676][bookmark: _Toc375229066][bookmark: _Toc375229871][bookmark: _Toc375230677][bookmark: _Toc375229067][bookmark: _Toc375229872][bookmark: _Toc375230678][bookmark: _Toc375229068][bookmark: _Toc375229873][bookmark: _Toc375230679][bookmark: _Toc375229069][bookmark: _Toc375229874][bookmark: _Toc375230680][bookmark: _Toc375229070][bookmark: _Toc375229875][bookmark: _Toc375230681][bookmark: _Toc375229071][bookmark: _Toc375229876][bookmark: _Toc375230682][bookmark: _Toc375229072][bookmark: _Toc375229877][bookmark: _Toc375230683][bookmark: _Toc375229073][bookmark: _Toc375229878][bookmark: _Toc375230684][bookmark: _Toc375229074][bookmark: _Toc375229879][bookmark: _Toc375230685][bookmark: _Toc375229075][bookmark: _Toc375229880][bookmark: _Toc375230686][bookmark: _Toc375229076][bookmark: _Toc375229881][bookmark: _Toc375230687][bookmark: _Toc375229077][bookmark: _Toc375229882][bookmark: _Toc375230688][bookmark: _Toc375229078][bookmark: _Toc375229883][bookmark: _Toc375230689][bookmark: _Toc375229079][bookmark: _Toc375229884][bookmark: _Toc375230690][bookmark: _Toc375229080][bookmark: _Toc375229885][bookmark: _Toc375230691][bookmark: _Toc375229081][bookmark: _Toc375229886][bookmark: _Toc375230692][bookmark: _Toc375229082][bookmark: _Toc375229887][bookmark: _Toc375230693][bookmark: _Toc375229083][bookmark: _Toc375229888][bookmark: _Toc375230694][bookmark: _Toc375229084][bookmark: _Toc375229889][bookmark: _Toc375230695][bookmark: _Toc375229085][bookmark: _Toc375229890][bookmark: _Toc375230696][bookmark: _Toc375229086][bookmark: _Toc375229891][bookmark: _Toc375230697][bookmark: _Toc375229087][bookmark: _Toc375229892][bookmark: _Toc375230698][bookmark: _Toc375229088][bookmark: _Toc375229893][bookmark: _Toc375230699][bookmark: _Toc375229089][bookmark: _Toc375229894][bookmark: _Toc375230700][bookmark: _Toc375229090][bookmark: _Toc375229895][bookmark: _Toc375230701][bookmark: _Toc375229091][bookmark: _Toc375229896][bookmark: _Toc375230702][bookmark: _Toc375229092][bookmark: _Toc375229897][bookmark: _Toc375230703][bookmark: _Toc375229093][bookmark: _Toc375229898][bookmark: _Toc375230704][bookmark: _Toc375229094][bookmark: _Toc375229899][bookmark: _Toc375230705][bookmark: _Toc375229095][bookmark: _Toc375229900][bookmark: _Toc375230706][bookmark: _Toc375229096][bookmark: _Toc375229901][bookmark: _Toc375230707][bookmark: _Toc375229097][bookmark: _Toc375229902][bookmark: _Toc375230708][bookmark: _Toc375229098][bookmark: _Toc375229903][bookmark: _Toc375230709][bookmark: _Toc375229099][bookmark: _Toc375229904][bookmark: _Toc375230710][bookmark: _Toc375229100][bookmark: _Toc375229905][bookmark: _Toc375230711][bookmark: _Toc375229101][bookmark: _Toc375229906][bookmark: _Toc375230712][bookmark: _Toc375229102][bookmark: _Toc375229907][bookmark: _Toc375230713][bookmark: _Toc375229103][bookmark: _Toc375229908][bookmark: _Toc375230714][bookmark: _Toc375229104][bookmark: _Toc375229909][bookmark: _Toc375230715][bookmark: _Toc375229105][bookmark: _Toc375229910][bookmark: _Toc375230716][bookmark: _Toc375229106][bookmark: _Toc375229911][bookmark: _Toc375230717][bookmark: _Toc375229107][bookmark: _Toc375229912][bookmark: _Toc375230718][bookmark: _Toc375229108][bookmark: _Toc375229913][bookmark: _Toc375230719][bookmark: _Toc375229109][bookmark: _Toc375229914][bookmark: _Toc375230720][bookmark: _Toc375229110][bookmark: _Toc375229915][bookmark: _Toc375230721][bookmark: _Toc375229111][bookmark: _Toc375229916][bookmark: _Toc375230722][bookmark: _Toc375229112][bookmark: _Toc375229917][bookmark: _Toc375230723][bookmark: _Toc375229113][bookmark: _Toc375229918][bookmark: _Toc375230724][bookmark: _Toc375229114][bookmark: _Toc375229919][bookmark: _Toc375230725][bookmark: _Toc375229115][bookmark: _Toc375229920][bookmark: _Toc375230726][bookmark: _Toc375229116][bookmark: _Toc375229921][bookmark: _Toc375230727][bookmark: _Toc375229117][bookmark: _Toc375229922][bookmark: _Toc375230728][bookmark: _Toc375229118][bookmark: _Toc375229923][bookmark: _Toc375230729][bookmark: _Toc375229119][bookmark: _Toc375229924][bookmark: _Toc375230730][bookmark: _Toc375229120][bookmark: _Toc375229925][bookmark: _Toc375230731][bookmark: _Toc375229121][bookmark: _Toc375229926][bookmark: _Toc375230732][bookmark: _Toc375229122][bookmark: _Toc375229927][bookmark: _Toc375230733][bookmark: _Toc375229123][bookmark: _Toc375229928][bookmark: _Toc375230734][bookmark: _Toc375229124][bookmark: _Toc375229929][bookmark: _Toc375230735][bookmark: _Toc375229125][bookmark: _Toc375229930][bookmark: _Toc375230736][bookmark: _Toc375229126][bookmark: _Toc375229931][bookmark: _Toc375230737][bookmark: _Toc375229127][bookmark: _Toc375229932][bookmark: _Toc375230738][bookmark: _Toc375229128][bookmark: _Toc375229933][bookmark: _Toc375230739][bookmark: _Toc375229129][bookmark: _Toc375229934][bookmark: _Toc375230740][bookmark: _Toc375229130][bookmark: _Toc375229935][bookmark: _Toc375230741][bookmark: _Toc375229131][bookmark: _Toc375229936][bookmark: _Toc375230742][bookmark: _Toc375229132][bookmark: _Toc375229937][bookmark: _Toc375230743][bookmark: _Toc375229133][bookmark: _Toc375229938][bookmark: _Toc375230744][bookmark: _Toc375229134][bookmark: _Toc375229939][bookmark: _Toc375230745][bookmark: _Toc375229135][bookmark: _Toc375229940][bookmark: _Toc375230746][bookmark: _Toc375229136][bookmark: _Toc375229941][bookmark: _Toc375230747][bookmark: _Toc375229137][bookmark: _Toc375229942][bookmark: _Toc375230748][bookmark: _Toc375229138][bookmark: _Toc375229943][bookmark: _Toc375230749][bookmark: _Toc375229139][bookmark: _Toc375229944][bookmark: _Toc375230750][bookmark: _Toc375229140][bookmark: _Toc375229945][bookmark: _Toc375230751][bookmark: _Toc375229141][bookmark: _Toc375229946][bookmark: _Toc375230752][bookmark: _Toc375229142][bookmark: _Toc375229947][bookmark: _Toc375230753][bookmark: _Toc375229143][bookmark: _Toc375229948][bookmark: _Toc375230754][bookmark: _Toc375229144][bookmark: _Toc375229949][bookmark: _Toc375230755][bookmark: _Toc375229145][bookmark: _Toc375229950][bookmark: _Toc375230756][bookmark: _Toc375229146][bookmark: _Toc375229951][bookmark: _Toc375230757][bookmark: _Toc375229147][bookmark: _Toc375229952][bookmark: _Toc375230758][bookmark: _Toc362009975][bookmark: _Toc362010395][bookmark: _Toc362020690][bookmark: _Toc362344468][bookmark: _Toc362377312][bookmark: _Toc362009976][bookmark: _Toc362010396][bookmark: _Toc362020691][bookmark: _Toc362344469][bookmark: _Toc362377313][bookmark: _Toc375229148][bookmark: _Toc375229953][bookmark: _Toc375230759][bookmark: _na_0037:_Use_of][bookmark: _Toc363741564][bookmark: _Toc363741949][bookmark: _Toc364674552][bookmark: _Toc364676163][bookmark: _Toc364676602][bookmark: _Toc364677040][bookmark: _Toc364677478][bookmark: _Toc364677916][bookmark: _Toc364678353][bookmark: _Toc364762700][bookmark: _Toc364763137][bookmark: _Toc364763573][bookmark: _Toc364764009][bookmark: _Toc364764445][bookmark: _Toc364764879][bookmark: _Toc364766903][bookmark: _Toc364775594][bookmark: _Toc364776063][bookmark: _Toc364776500][bookmark: _Toc364864853][bookmark: _Toc364865776][bookmark: _Toc364866210][bookmark: _Toc364866645][bookmark: _Toc364867079][bookmark: _Toc364935099][bookmark: _Toc364937260][bookmark: _Toc365277356][bookmark: _Toc365298886][bookmark: _Toc365304227][bookmark: _Toc365304968][bookmark: _Toc365362014][bookmark: _Toc365539865][bookmark: _Toc366143400][bookmark: _Toc366770194][bookmark: _Toc366771762][bookmark: _Toc363741595][bookmark: _Toc363741980][bookmark: _Toc364674583][bookmark: _Toc364676194][bookmark: _Toc364676633][bookmark: _Toc364677071][bookmark: _Toc364677509][bookmark: _Toc364677947][bookmark: _Toc364678384][bookmark: _Toc364762731][bookmark: _Toc364763168][bookmark: _Toc364763604][bookmark: _Toc364764040][bookmark: _Toc364764476][bookmark: _Toc364764910][bookmark: _Toc364766934][bookmark: _Toc364775625][bookmark: _Toc364776094][bookmark: _Toc364776531][bookmark: _Toc364864884][bookmark: _Toc364865807][bookmark: _Toc364866241][bookmark: _Toc364866676][bookmark: _Toc364867110][bookmark: _Toc364935130][bookmark: _Toc364937291][bookmark: _Toc365277387][bookmark: _Toc365298917][bookmark: _Toc365304258][bookmark: _Toc365304999][bookmark: _Toc365362045][bookmark: _Toc365539896][bookmark: _Toc366143431][bookmark: _Toc366770225][bookmark: _Toc366771793][bookmark: _Toc363741599][bookmark: _Toc363741984][bookmark: _Toc364674587][bookmark: _Toc364676198][bookmark: _Toc364676637][bookmark: _Toc364677075][bookmark: _Toc364677513][bookmark: _Toc364677951][bookmark: _Toc364678388][bookmark: _Toc364762735][bookmark: _Toc364763172][bookmark: _Toc364763608][bookmark: _Toc364764044][bookmark: _Toc364764480][bookmark: _Toc364764914][bookmark: _Toc364766938][bookmark: _Toc364775629][bookmark: _Toc364776098][bookmark: _Toc364776535][bookmark: _Toc364864888][bookmark: _Toc364865811][bookmark: _Toc364866245][bookmark: _Toc364866680][bookmark: _Toc364867114][bookmark: _Toc364935134][bookmark: _Toc364937295][bookmark: _Toc365277391][bookmark: _Toc365298921][bookmark: _Toc365304262][bookmark: _Toc365305003][bookmark: _Toc365362049][bookmark: _Toc365539900][bookmark: _Toc366143435][bookmark: _Toc366770229][bookmark: _Toc366771797][bookmark: _Toc363741600][bookmark: _Toc363741985][bookmark: _Toc364674588][bookmark: _Toc364676199][bookmark: _Toc364676638][bookmark: _Toc364677076][bookmark: _Toc364677514][bookmark: _Toc364677952][bookmark: _Toc364678389][bookmark: _Toc364762736][bookmark: _Toc364763173][bookmark: _Toc364763609][bookmark: _Toc364764045][bookmark: _Toc364764481][bookmark: _Toc364764915][bookmark: _Toc364766939][bookmark: _Toc364775630][bookmark: _Toc364776099][bookmark: _Toc364776536][bookmark: _Toc364864889][bookmark: _Toc364865812][bookmark: _Toc364866246][bookmark: _Toc364866681][bookmark: _Toc364867115][bookmark: _Toc364935135][bookmark: _Toc364937296][bookmark: _Toc365277392][bookmark: _Toc365298922][bookmark: _Toc365304263][bookmark: _Toc365305004][bookmark: _Toc365362050][bookmark: _Toc365539901][bookmark: _Toc366143436][bookmark: _Toc366770230][bookmark: _Toc366771798][bookmark: _Toc363741601][bookmark: _Toc363741986][bookmark: _Toc364674589][bookmark: _Toc364676200][bookmark: _Toc364676639][bookmark: _Toc364677077][bookmark: _Toc364677515][bookmark: _Toc364677953][bookmark: _Toc364678390][bookmark: _Toc364762737][bookmark: _Toc364763174][bookmark: _Toc364763610][bookmark: _Toc364764046][bookmark: _Toc364764482][bookmark: _Toc364764916][bookmark: _Toc364766940][bookmark: _Toc364775631][bookmark: _Toc364776100][bookmark: _Toc364776537][bookmark: _Toc364864890][bookmark: _Toc364865813][bookmark: _Toc364866247][bookmark: _Toc364866682][bookmark: _Toc364867116][bookmark: _Toc364935136][bookmark: _Toc364937297][bookmark: _Toc365277393][bookmark: _Toc365298923][bookmark: _Toc365304264][bookmark: _Toc365305005][bookmark: _Toc365362051][bookmark: _Toc365539902][bookmark: _Toc366143437][bookmark: _Toc366770231][bookmark: _Toc366771799][bookmark: _Toc363741602][bookmark: _Toc363741987][bookmark: _Toc364674590][bookmark: _Toc364676201][bookmark: _Toc364676640][bookmark: _Toc364677078][bookmark: _Toc364677516][bookmark: _Toc364677954][bookmark: _Toc364678391][bookmark: _Toc364762738][bookmark: _Toc364763175][bookmark: _Toc364763611][bookmark: _Toc364764047][bookmark: _Toc364764483][bookmark: _Toc364764917][bookmark: _Toc364766941][bookmark: _Toc364775632][bookmark: _Toc364776101][bookmark: _Toc364776538][bookmark: _Toc364864891][bookmark: _Toc364865814][bookmark: _Toc364866248][bookmark: _Toc364866683][bookmark: _Toc364867117][bookmark: _Toc364935137][bookmark: _Toc364937298][bookmark: _Toc365277394][bookmark: _Toc365298924][bookmark: _Toc365304265][bookmark: _Toc365305006][bookmark: _Toc365362052][bookmark: _Toc365539903][bookmark: _Toc366143438][bookmark: _Toc366770232][bookmark: _Toc366771800][bookmark: _Toc363741603][bookmark: _Toc363741988][bookmark: _Toc364674591][bookmark: _Toc364676202][bookmark: _Toc364676641][bookmark: _Toc364677079][bookmark: _Toc364677517][bookmark: _Toc364677955][bookmark: _Toc364678392][bookmark: _Toc364762739][bookmark: _Toc364763176][bookmark: _Toc364763612][bookmark: _Toc364764048][bookmark: _Toc364764484][bookmark: _Toc364764918][bookmark: _Toc364766942][bookmark: _Toc364775633][bookmark: _Toc364776102][bookmark: _Toc364776539][bookmark: _Toc364864892][bookmark: _Toc364865815][bookmark: _Toc364866249][bookmark: _Toc364866684][bookmark: _Toc364867118][bookmark: _Toc364935138][bookmark: _Toc364937299][bookmark: _Toc365277395][bookmark: _Toc365298925][bookmark: _Toc365304266][bookmark: _Toc365305007][bookmark: _Toc365362053][bookmark: _Toc365539904][bookmark: _Toc366143439][bookmark: _Toc366770233][bookmark: _Toc366771801][bookmark: _Toc363741604][bookmark: _Toc363741989][bookmark: _Toc364674592][bookmark: _Toc364676203][bookmark: _Toc364676642][bookmark: _Toc364677080][bookmark: _Toc364677518][bookmark: _Toc364677956][bookmark: _Toc364678393][bookmark: _Toc364762740][bookmark: _Toc364763177][bookmark: _Toc364763613][bookmark: _Toc364764049][bookmark: _Toc364764485][bookmark: _Toc364764919][bookmark: _Toc364766943][bookmark: _Toc364775634][bookmark: _Toc364776103][bookmark: _Toc364776540][bookmark: _Toc364864893][bookmark: _Toc364865816][bookmark: _Toc364866250][bookmark: _Toc364866685][bookmark: _Toc364867119][bookmark: _Toc364935139][bookmark: _Toc364937300][bookmark: _Toc365277396][bookmark: _Toc365298926][bookmark: _Toc365304267][bookmark: _Toc365305008][bookmark: _Toc365362054][bookmark: _Toc365539905][bookmark: _Toc366143440][bookmark: _Toc366770234][bookmark: _Toc366771802][bookmark: _Toc363741610][bookmark: _Toc363741995][bookmark: _Toc364674598][bookmark: _Toc364676209][bookmark: _Toc364676648][bookmark: _Toc364677086][bookmark: _Toc364677524][bookmark: _Toc364677962][bookmark: _Toc364678399][bookmark: _Toc364762746][bookmark: _Toc364763183][bookmark: _Toc364763619][bookmark: _Toc364764055][bookmark: _Toc364764491][bookmark: _Toc364764925][bookmark: _Toc364766949][bookmark: _Toc364775640][bookmark: _Toc364776109][bookmark: _Toc364776546][bookmark: _Toc364864899][bookmark: _Toc364865822][bookmark: _Toc364866256][bookmark: _Toc364866691][bookmark: _Toc364867125][bookmark: _Toc364935145][bookmark: _Toc364937306][bookmark: _Toc365277402][bookmark: _Toc365298932][bookmark: _Toc365304273][bookmark: _Toc365305014][bookmark: _Toc365362060][bookmark: _Toc365539911][bookmark: _Toc366143446][bookmark: _Toc366770240][bookmark: _Toc366771808][bookmark: _Toc363741666][bookmark: _Toc363742051][bookmark: _Toc364674654][bookmark: _Toc364676265][bookmark: _Toc364676704][bookmark: _Toc364677142][bookmark: _Toc364677580][bookmark: _Toc364678018][bookmark: _Toc364678455][bookmark: _Toc364762802][bookmark: _Toc364763239][bookmark: _Toc364763675][bookmark: _Toc364764111][bookmark: _Toc364764547][bookmark: _Toc364764981][bookmark: _Toc364767005][bookmark: _Toc364775696][bookmark: _Toc364776165][bookmark: _Toc364776602][bookmark: _Toc364864955][bookmark: _Toc364865878][bookmark: _Toc364866312][bookmark: _Toc364866747][bookmark: _Toc364867181][bookmark: _Toc364935201][bookmark: _Toc364937362][bookmark: _Toc365277458][bookmark: _Toc365298988][bookmark: _Toc365304329][bookmark: _Toc365305070][bookmark: _Toc365362116][bookmark: _Toc365539967][bookmark: _Toc366143502][bookmark: _Toc366770296][bookmark: _Toc366771864][bookmark: _Toc363741667][bookmark: _Toc363742052][bookmark: _Toc364674655][bookmark: _Toc364676266][bookmark: _Toc364676705][bookmark: _Toc364677143][bookmark: _Toc364677581][bookmark: _Toc364678019][bookmark: _Toc364678456][bookmark: _Toc364762803][bookmark: _Toc364763240][bookmark: _Toc364763676][bookmark: _Toc364764112][bookmark: _Toc364764548][bookmark: _Toc364764982][bookmark: _Toc364767006][bookmark: _Toc364775697][bookmark: _Toc364776166][bookmark: _Toc364776603][bookmark: _Toc364864956][bookmark: _Toc364865879][bookmark: _Toc364866313][bookmark: _Toc364866748][bookmark: _Toc364867182][bookmark: _Toc364935202][bookmark: _Toc364937363][bookmark: _Toc365277459][bookmark: _Toc365298989][bookmark: _Toc365304330][bookmark: _Toc365305071][bookmark: _Toc365362117][bookmark: _Toc365539968][bookmark: _Toc366143503][bookmark: _Toc366770297][bookmark: _Toc366771865][bookmark: _Toc381885188][bookmark: _Toc383804066][bookmark: _Toc420056514]Basis, list of rule parameters
[bookmark: _Toc383804067][bookmark: _Toc420056515][bookmark: _Toc381885189]Basis
[bookmark: _Toc383804068][bookmark: _Toc420056516]Basis category
For the basis, one or more reasons from the following reasons that the guideline recommends will be selected.
1. Readability
· Improvement of graphical understandability
· Improvement of readability of functional analysis.
· Prevention of connection mistake
· Comments and so on
2. Simulation and verification
· System to enable simulation
· Easy testing
3. Code generation
· Improvement of efficiency of generation code.(ROM,RAM efficiency)
· Securement of robustness of a generation code
4. Others
· Maintainability and operatability
· Template
· Not correspond to basis described above (Basis is unclear)
[bookmark: _Toc383804069][bookmark: _Toc420056517]List of rule basis
	Rule ID
	Readability
	Simulation and verification are effective
	Effective/efficient to built-in code generation
	Others

	ar_0001
	
	○
	
	　

	ar_0002
	
	
	△：In the past
	　

	jc_0241
	○
	
	○
	　

	jc_0242
	○
	
	
	　

	jc_0201
	
	
	○
	　

	jc_0211
	
	
	○
	　

	jc_0222
	
	
	○
	　

	jc_0232
	
	○
	
	　

	jc_0231
	○
	
	
	　

	jc_0243
	○
	
	○
	　

	jc_0244
	○
	
	○
	　

	jc_0245
	○
	
	○
	　

	jc_0246
	○
	
	○
	　

	jc_0247
	○
	
	
	　

	na_0035
	○
	
	
	　

	jc_0251
	
	
	○
	　

	na_0014
	
	△：In the past
	
	　

	
	
	
	
	

	na_0006
	○
	
	○
	　

	na_0007
	
	○
	
	　

	db_0143
	○
	
	
	　

	db_0144
	○
	
	
	　

	na_0004
	○
	
	
	　

	db_0043
	○
	
	
	　

	db_0042
	○
	
	
	　

	jm_0002
	○
	
	
	　

	db_0142
	○
	
	
	　

	jc_0061
	○
	
	
	　

	db_0140
	○
	
	
	　

	db_0032
	○
	
	
	　

	db_0141
	○
	
	
	　

	jc_0110
	○
	
	
	　

	jc_0111
	○
	
	
	　

	jc_0653
	○
	○
	
	　

	jc_0171
	○
	
	
	　

	jc_0602
	○
	
	
	　

	db_0146
	○
	
	
	　

	jc_0281
	○
	
	
	　

	jc_0603
	○
	
	
	　

	jc_0604
	○
	
	
	　

	na_0010
	
	○
	
	　

	na_0008
	
	
	
	　

	na_0009
	
	
	
	　

	na_0005
	
	
	
	　

	jc_0082
	
	
	
	　

	jc_0083
	
	
	
	　

	db_0097
	○
	
	
	　

	db_0081
	
	○
	
	　

	na_0003
	○
	
	
	　

	na_0002
	
	○
	
	　

	jm_0001
	
	
	○
	　

	hd_0001
	
	
	○
	　

	na_0011
	○
	
	
	　

	jc_0141
	
	○
	
	　

	jc_0121
	○
	
	
	　

	jc_0610
	○
	
	
	　

	jc_0611
	
	
	○
	　

	jc_0131
	○
	
	
	　

	jc_0161
	○
	○
	
	　

	jc_0621
	○
	
	
	　

	jc_0011
	
	
	○
	　

	jc_0629
	
	
	○
	　

	jc_0622
	○
	
	
	　

	jc_0626
	
	
	○
	　

	jc_0627
	
	○
	○
	　

	jc_0628
	○
	
	
	　

	jc_0650
	
	○
	
	　

	jc_0630
	○
	○
	
	　

	jc_0631
	
	
	○
	　

	jc_0632
	○
	○
	
	　

	jc_0625
	○
	
	
	　

	jc_0640
	
	○
	○
	　

	db_0112
	
	
	○
	　

	db_0110
	
	
	○
	　

	jc_0645
	
	
	○
	　

	jc_0641
	
	
	
	Improvement of maintainability and operatability

	jc_0642
	
	
	○
	　

	jc_0643
	
	
	○
	　

	jc_0644
	
	
	
	Improvement of maintainability and operatability

	db_0114
	
	
	
	Template

	db_0115
	
	
	
	Template

	db_0116
	
	
	
	Template

	db_0117
	
	
	
	Template

	na_0012
	
	
	
	Not correspond to basis described above

	na_0028
	
	
	
	Not correspond to basis described above

	jc_0658
	○
	○
	○
	　

	jc_0623
	○
	
	
	　

	jc_0624
	○
	
	○
	　

	jc_0651
	○
	
	○
	　

	jc_0652
	○
	
	
	　

	jc_0659
	○
	○
	
	　

	jc_0656
	○
	
	
	　

	jc_0657
	○
	
	○
	　

	
	
	
	
	

	db_0123
	○
	
	
	　

	jc_0700
	
	
	
	Improvement of maintainability and operatability

	db_0122
	
	○
	
	　

	db_0125
	
	
	
	Improvement of maintainability and operatability

	jc_0701
	
	
	
	Improvement of maintainability and operatability

	jc_0702
	
	
	○
	　

	jm_0011
	
	
	
	○

	db_0129
	○
	
	
	　

	db_0137
	○
	
	○
	　

	jc_0711
	
	○
	○
	　

	jc_0531
	○
	○
	○
	　

	jc_0712
	○
	○
	○
	　

	na_0038
	○
	
	
	　

	na_0040
	○
	
	
	　

	jc_0720
	○
	
	
	　

	jc_0721
	○
	
	○
	　

	jc_0722
	
	
	
	Improvement of maintainability and operatability

	jc_0723
	○
	○
	
	　

	jc_0730
	
	○
	○
	　

	jc_0731
	○
	
	
	　

	jc_0732
	○
	
	
	　

	jc_0733
	○
	○
	
	　

	jc_0734
	○
	○
	
	　

	jc_0740
	○
	○
	
	　

	jc_0501
	○
	
	
	　

	jc_0735
	
	○
	
	　

	jc_0736
	○
	
	
	　

	jc_0737
	○
	
	
	　

	jc_0738
	○
	
	
	　

	jc_0739
	○
	
	
	　

	jc_0741
	○
	○
	
	　

	jc_0742
	○
	
	
	　

	jc_0770
	○
	
	
	　

	jc_0771
	○
	
	○
	　

	jc_0772
	○
	
	
	　

	jc_0752
	○
	
	
	　

	jc_0743
	○
	
	
	　

	jc_0750
	○
	
	
	　

	jc_0751
	
	○
	○
	　

	jc_0754
	○
	
	
	　

	jc_0753
	○
	
	
	　

	db_0151
	○
	
	
	　

	na_0013
	
	
	○
	　

	jc_0481
	
	○
	○
	　

	na_0001
	○
	
	○
	　

	jc_0655
	○
	
	
	　

	jc_0451
	
	○
	○
	　

	jc_0755
	○
	
	
	　

	jc_0756
	○
	
	
	　

	jc_0757
	○
	
	
	　

	jc_0491
	○
	
	
	　

	jc_0521
	○
	
	
	　

	jc_0760
	○
	
	
	　

	jc_0762
	○
	
	
	　

	jc_0763
	○
	
	
	　

	jc_0761
	○
	
	
	　

	db_0132
	○
	
	
	　

	db_0134
	
	
	
	Template

	db_0159
	
	
	
	Template

	db_0135
	
	
	
	Template

	jc_0773
	○
	
	
	　

	jc_0774
	○
	
	
	　

	jc_0511
	○
	
	△
	　

	jc_0775
	○
	
	
	　

	jc_0776
	○
	
	
	　

	db_0126
	△
	△
	
	　

	jc_0780
	○
	○
	
	　

	jc_0781
	
	○
	
	　

	jm_0012
	○
	
	
	　

	na_0041
	○
	
	
	　

	na_0042
	○
	
	
	　

	na_0039
	○
	○
	
	　

	db_0127
	
	
	○
	　

	
	
	
	
	

	na_0037
	○
	
	
	　

	na_0020
	
	○
	
	　

	na_0036
	○
	
	
	　

	na_0033
	○
	
	
	　

	na_0031
	○
	
	○
	　

	na_0018
	○
	
	
	　

	na_0025
	○
	
	
	　

	na_0034
	
	
	
	Not correspond to basis described above

	na_0024
	○
	
	
	　

	na_0022
	
	○
	
	　

	na_0016
	○
	
	
	　

	na_0017
	○
	
	
	　

	na_0021
	○
	○
	○
	　

[bookmark: _Toc383804070][bookmark: _Toc420056518]Selectable parameters of each rule
[bookmark: _Toc383804071][bookmark: _Toc420056519]Interpretation
In several rules, it is clearly described that is is selectable. However not all rules include that description. Regarding the others, there is no need to accord completely to description. This guideline provides templates for practical use of rules in projects. Numeric values and block types described in guidelines are not absolute. They need adaptation to characteristics of each project. In this section, least choices which must be decided based on characteristics of each project are described. As other elements, development processes of each project, conditions of controlling object, average of skill levels of relating engineers should be taken into comprehensive consideration. Appropriate operation based on understanding of what guidelines really mean is expected.
[bookmark: _Toc383804072][bookmark: _Toc420056520]List of rule parameters
This list does not completely include all selectable parameters.

	Rule ID
	Parameters

	ar_0001
	Extensions which are subject to this rule is decided.
In case limite to MATLAB related files, following extensions are subject to this rule.　{m,p,mdl,slx,fig,c,h,mexw64,mexw32}
Current version does not use dll.
In case all files are subject to this rule, kinds of extensions should not be limited.

	ar_0002
	

	jc_0241
	Total number of characters

	jc_0242
	Total number of characters

	jc_0201
	

	jc_0211
	

	jc_0222
	

	jc_0232
	

	jc_0231
	Kinds of subsystems
Expansion to function declaration.

	jc_0243
	Total number of characters

	jc_0244
	Total number of characters

	jc_0245
	Total number of characters

	jc_0246
	Total number of characters

	jc_0247
	Total number of characters

	na_0035
	All of naming conventions

	jc_0251
	

	na_0014
	Places in which using local language is inhibited.
Processes adoption.

	
	

	na_0006
	

	na_0007
	

	db_0143
	· The list of blocks which are allowed to use on all layers.
· The list of blocks which is used depends on layers.
· Definitions of layers

	db_0144
	

	na_0004
	The type of options and setting values which should be selected.

	db_0043
	Kind of the font, size and style.
Simulink: Standard setting should be decided for each of block, line and annotation.
Stateflow: Standard setting should be decided for each of state label and transition label.

	db_0042
	

	jm_0002
	Blocks which are subject to this rule. And their sizes. Regarding block sizes, tolerances should be decided.

	db_0142
	

	jc_0061
	For each process subject to this rule, following lists should be decided.
· The list of block types whose names are always displayed
· The list of block types whose names are always undisplayed.
· The list of block types whose names are selectable to be displayed or undisplayed

	db_0140
	For each process subject to this rule, following lists should be decided.
· Block types subject to this rule, options to be displayed and conditions to display options.
· How to display and displaying characters.

	db_0032
	

	db_0141
	

	jc_0110
	Block types which are allowed to be rotated.

	jc_0111
	

	jc_0653
	

	jc_0171
	

	jc_0602
	

	db_0146
	Regarding detailed position of blocks, it is selected from the following patterns.
· Anywhere of top portion
· Rightside of top portion
· Center of top portion
· Leftside of top portion
In case model information is described according to jc_0603, relative position of conditional input blocks and them should be clarified.

Positions of following blocks also should be decided.
· For Each
· For Iterator

	jc_0281
	Which of block name or subsystem name inherit names of blocks

	jc_0603
	Decide the kind of the block which is used for model description.
· Annotation
· ModelInfo
· Both can be used

Detail of position should be decided.
Examples:
· The most upper left
· Anywhere of top portion
· Right-side of the whole
· Center of the whole
· Left-side of the whole

In case db_0146 is also applied, relative position of conditional input blocks and model informations should be decided.
Examples:
· Horizontally same position
· The upper position than conditional input blocks

The keyword string should be decided.
例：
· Prerequisite
· Outline
· Function

	jc_0604
	Blocks which are allowed to set block shading.

	na_0010
	

	na_0008
	

	na_0009
	

	na_0005
	Which of jc_0082 or jc_0083 is adopted.

	jc_0082
	

	jc_0083
	

	db_0097
	

	db_0081
	How to enable distinguishment of automatically added blocks and intentionally added ones should be decided

	na_0003
	

	na_0002
	Block types are registered to following lists..
· List of block types that are awaiting logical values.
· List of block types that are awaiting numerical values.

	jm_0001
	Prohibited block types

	hd_0001
	Prohibited block types

	na_0011
	

	jc_0141
	

	jc_0121
	

	jc_0610
	

	jc_0611
	

	jc_0131
	

	jc_0161
	

	jc_0621
	Which of the Logical Operator block icon shape "square" or "characteristics" is adopted.

	jc_0011
	

	jc_0629
	

	jc_0622
	

	jc_0626
	

	jc_0627
	

	jc_0628
	

	jc_0650
	

	jc_0630
	

	jc_0631
	

	jc_0632
	

	jc_0625
	Unified rule for initial value is decided.

	jc_0640
	

	db_0112
	Which of 0 based indexing or 1 based indexing is adopted.

	db_0110
	

	jc_0645
	

	jc_0641
	

	jc_0642
	

	jc_0643
	

	jc_0644
	

	db_0114
	

	db_0115
	

	db_0116
	

	db_0117
	

	na_0012
	

	na_0028
	The nest level of switch blocks.
Total nest level?

	jc_0658
	

	jc_0623
	

	jc_0624
	

	jc_0651
	Kinds of blocks that are used for Cast.
How to describe Cast.

	jc_0652
	

	jc_0659
	

	jc_0656
	

	jc_0657
	Whether comments are described or not.
In case comments are described, contents and positions should be decided.

	
	

	db_0123
	

	jc_0700
	

	db_0122
	

	db_0125
	

	jc_0701
	

	jc_0702
	

	jm_0011
	

	db_0129
	

	db_0137
	

	jc_0711
	

	jc_0531
	

	jc_0712
	

	na_0038
	The maximum number of layers within a single viewer.

	na_0040
	The maximum number of layers within a single viewer.

	jc_0720
	

	jc_0721
	

	jc_0722
	

	jc_0723
	

	jc_0730
	

	jc_0731
	

	jc_0732
	

	jc_0733
	

	jc_0734
	

	jc_0740
	

	jc_0501
	

	jc_0735
	

	jc_0736
	

	jc_0737
	

	jc_0738
	

	jc_0739
	

	jc_0741
	

	jc_0742
	The number of conditions written in a line.(An example number is 3)
In case of multiple lines, the position of operators. (They are written on start of lines or end of lines.)

	jc_0770
	Positions of conditions and actions in flow chart.
· Near the starting point of transitions
· Near the center of transitions

	jc_0771
	It should be decided that comments are written above lines or written below lines.

	jc_0772
	

	jc_0752
	

	jc_0743
	

	jc_0750
	

	jc_0751
	

	jc_0754
	

	jc_0753
	

	db_0151
	

	na_0013
	

	jc_0481
	

	na_0001
	

	jc_0655
	Which of "~" or "!" is used as negation.
"!" is recommended.

	jc_0451
	

	jc_0755
	

	jc_0756
	

	jc_0757
	

	jc_0491
	

	jc_0521
	

	jc_0760
	

	jc_0762
	

	jc_0763
	

	jc_0761
	

	db_0132
	

	db_0134
	

	db_0159
	

	db_0135
	

	jc_0773
	

	jc_0774
	

	jc_0511
	

	jc_0775
	

	jc_0776
	

	db_0126
	

	jc_0780
	

	jc_0781
	

	jm_0012
	

	na_0041
	

	na_0042
	

	na_0039
	

	db_0127
	

	
	

	na_0037
	

	na_0020
	

	na_0036
	

	na_0033
	

	na_0031
	

	na_0018
	

	na_0025
	

	na_0034
	

	na_0024
	

	na_0022
	

	na_0016
	Number of lines in MATLAB function is 60.
It should be decided whether comments are also counted or only execution lines are counted.

	na_0017
	Number of maximum layers.

	na_0021
	

[bookmark: _Toc381605647][bookmark: _Toc383016687][bookmark: _Toc383019221][bookmark: _Toc383076560]
Common
· Let the masked inside be targeted search?
· Is the kind of function setup by which atomic was carried out limited?
· Please determine the subsystem classified into annotation, and the kind of S-function.
For example, is the following kind classified into annotation?
· Do an input and the block without an output port correspond?
· What kind of block type name corresponds?
· What kind of mask type name is applicable striped soot?

[bookmark: _Toc382987020][bookmark: _Toc390338085][bookmark: _Toc420056521]Terminology/supplementary explanation
JMAAB's own supplementary information not published in MAAB guideline (English) will be published here. This resource material includes content that requires supplement particular to Japan. Although the Help section in MATLAB has everything in the English translation, the Japanese Help section does not have all. Therefore, there are various sections that need to be explained just for Japan. This chapter added its own supplementary explanation on items that should be originally be read minutely on Help
Definitions of terminologies used in the guideline and the commentary on the functions
[bookmark: _Toc362377254][bookmark: _Toc362344410][bookmark: _Toc362020634][bookmark: _Toc362010339][bookmark: _Toc362009919][bookmark: _Toc362377253][bookmark: _Toc362344409][bookmark: _Toc362020633][bookmark: _Toc362010338][bookmark: _Toc362009918][bookmark: _Toc382987021][bookmark: _Toc390338086][bookmark: _Toc420056522][bookmark: _Toc359428416]Commentary on Simulink terminologies
[bookmark: _Toc382987022][bookmark: _Toc390338087][bookmark: _Toc420056523]Definition of basic blocks
In this guideline, the built-in blocks of standard Simulink library are defined as “basic blocks”
Below are the examples of basic blocks.

Related ID：db_0110、db_0143,jc_0641,db_0146,jc_0281

[bookmark: _Toc382987023][bookmark: _Toc390338088][bookmark: _Toc420056524]Definition of port blocks.
When the term "port block" is used in this guideline, it is referring to the input and output port of the subsystem.
Ports used for the conditional system are referred to as "condition input blocks". The block groups that include port block and condition input blocks are referred to as a "port block group".
	
	
	Block type

	Port block group
	Port block
	Inport,Outport

	
	Condition input block
	Enable
For Iterator
Action Port
Switch Case Action
Trigger
While Iterator

Related ID：na_0005,jc_0082,jc_0083,

[bookmark: _Toc382987024][bookmark: _Toc390338089][bookmark: _Toc420056525]Conditional control flow
Flow listed using conditional subsystem that includes condition input block is referred to as “conditional control flow”

An example of a conditional subsystem

An example of conditional control flow
　

Conditional control flow indicates flow listed using a conditional subsystem. However, it does not indicate a function in which only one subsystem operates. A system that conducts calculation for several times for for iterator and while iterator also exist. The flow of original block in which the signal is input into a conditional subsystem and the conditional subsystem and how it’s used form a pair, known as a “conditional control flow”.
Related ID:na_0012,na_0028,jc_0658,jc_0656,jc_0657

[bookmark: _Toc391557287][bookmark: _Toc420056526]Blocks with State Variables
Block with state variables is a block that keeps values of the past in memory.
The blocks are stored under <Simulink><Discrete>.
Blocks with state variables have initial value(s). Blocks with state variables are blocks in which initial values setting is enabled. Also, most of blocks with state variables have the State Attributes property within the block properties.

Example of Block with State Attributes Property

There are some blocks without state attributes, for example, Tapped Delay.

Note that a conditional control flow may have state variables depending on the flow’s structure pattern.
Related ID：jc_0658,jc_0625,jc_0640
[bookmark: _Toc391557288][bookmark: _Toc420056527]Branch Syntax with State Variables
Switch and Conditional Control Flow behave differently when they have a state variable.
Depending on the configuration setting, when any state variable exists, the Switch block generally executes subsystem A if the condition of control port is satisfied, and if not, it executes only subsystem B without calculating subsystem A.

However, when the subsystem A contains a state variable, calculation for the state variable within the subsystem A is processed even if the conditions of control port do not hold.
On the other hand, in the Conditional control flow, the subsystem A is calculated if the condition holds, and if not, the subsystem B is calculated instead of subsystem A, regardless of existence of state variables in subsystem A.

Reset action in recalculation can be specified by Action Port setting.
The behaviors of subsystem A using Switch and Conditional control flow are listed in the following tables:

Behavior of subsystem A
	Control port condition

	State variables (in subsystem A)
	Switch
	Conditional control flow

	Hold
	No

	Executed

	Executed

	
	Yes

	
	

	Not hold
	No

	Not executed

	Not executed

	
	Yes

	Minimally-processed
*Executed calculations related to the state variables

	

Initialization timing of subsystem A
	
	ActionPort
	Initialize

	Switch
	－
	First time only

	Conditional control flow

	Hold

	First time only

	
	Reset

	At returned by condition

Understand the behaviors above to determine the more suitable structure to use, Switch block or conditional control flow, according on the intended use.

Related ID:na_0012,na_0028,jc_0658,jc_0656,jc_0657,db_0114,db_0115

[bookmark: _Toc382987025][bookmark: _Toc390338090][bookmark: _Toc420056528]The definition of subsystem
Subsystem is used for compiling various blocks and subsystems. However, they can also be used for other purposes. Below, usage methods that are not functional subsystems will be listed.
· Open function of the subsystem will be used.
· This is used with the purpose of running several tools or displaying an explanatory text separate to the model.
· Mask display of the subsystem will be used.
· This describe the outline or display fixed form documents, such as "classified"
· Turning block composition into groups using a subsystem bracket
· From R2012b onward, subsystems can be place in the back of the block. Using this, the foreground of subsystem can be set to a slightly lighter color, such as grey. A subsystem can be used for compiling several blocks that do not require to be turned into a subsystem into a group.
When taking usage methods other than the above usage of compiling functions, generally such subsystem is set to exclude code generation as targets with blocks that do not have any input or output. Furthermore, if possible, these subsystems should not display the block name or use a determined block name if it is displayed, making it clear that it is not a general subsystem. When the expression "subsystem" is used in this guideline, it covers subsystems that "use functions separately", which always cover code generation. Categorically speaking, other subsystems have rules on the annotation side applied.
Furthermore, there are also subsystems that have had its setting changed to a mask subsystem (a subsystem that was simply set to NoReadOrWrite), in which a general user cannot see the content. This change could be made by the upper level user certified by the organization mask the subsystem after designing or reviewing it. This subsystem is excluded from the guideline's inspection target. A list should be created on exclusion targets and should be managed within the project.
Related ID:jc_0201,jc_0231,jc_0243,db_0144,jc_0111,jc_0653

[bookmark: _Toc359428418][bookmark: _Toc382987026][bookmark: _Toc390338091][bookmark: _Toc420056529]The definition of a dictionary
The actual state of the title data dictionary differs for each project. MathWorks provide various methods, such as data management method that uses m-file and data management method that uses a model explorer. For example, MWJ proposes a tool that can manage data with a description method that follows data dictionary format stipulated by JMAAB (provided at MATLAB CENTRAL "SDOxlsIF: Excel Interface API for Simulink Data Object) Other than this, there are also companies that use DCM file based on ASAM as a data dictionary. Of course, it is possible to make a company's own format. As such, even the term "data dictionary" can be perceived differently depending on the project.

When the term “data dictionary” is used in this document, it refers to the list of signals and parameters managed by the various methods mentioned above.
Related ID：jc_0644,na_0035,jc_0251

[bookmark: _Toc382987027][bookmark: _Toc390338092][bookmark: _Toc420056530]Signal
The RAM value that appears in the data dictionary is referred to as a signal.
This refers to the variable used in the code generation that uses Simulink or mpt object. It is also referred to as signal object at times.
When the label name is added to the signal line before and after the block, and this is used for code generation, it is then referred as a signal.
In cases where only the label name is stipulated without having any Simulink or mpt object, it is a name that has an annotative nuance or was given to differentiate signals to use bus. Therefore, strictly-speaking, signals that do not appear in the data dictionary are not covered by he guideline.
Related ID:jc_0222,jc_0245,na_0035,jc_0251

[bookmark: _Toc382987028][bookmark: _Toc390338093][bookmark: _Toc420056531]Parameter
It refers to a RAM or ROM value that appears in a data dictionary with a fixed number.
Parameters that have values that are used for code generation that use Simulink or mpt object are either variables or constants. It is also referred to as a parameter object.
Parameters do not become altered during a single simulation. However, a variable-type parameter that has been stipulated as an adaptable RAM can have its values altered while Simulink is executed or after being implemented by using an external tool. This is called a relevant constant and can be altered during operation.
Parameters that do not appear in data dictionary are usually not treated as the target in this guideline. The parameters that become targets are few in number, such as the switching constant.
Related ID:jc_0232,jc_0246,na_0035,jc_0251

[bookmark: _Toc382987029][bookmark: _Toc390338094][bookmark: _Toc420056532][bookmark: _Ref359428665][bookmark: _Ref359428666][bookmark: _Toc359428500]Signal label and signal name
Signal label is used to make the functions of the Simulink block diagram model easier to understand. Furthermore, it can also be used to manage the variable names used in simulation and code generation.
Signal name is inputted only once (at the time the signal is emitted). When displaying the inputted signal name at a different location of the model, it will be displayed as a propagation signal if the signal has not been converted functionally (Signals can be functionally converted by having it go through an integrator. Signals will not be converted functionally even if they go through a subsystem import that had become a nest). If the signal with a name given was functionally converted, have a new name be related to it.
Unless not specified clearly elsewhere, the “signal” guidelines can be applied to various types of signals.
For details of the representation of Simulink model signal, please refer to "How to Handle Signals", a Simulink Documentation
Related ID:jc_0222,jc_0245,na_0035,jc_0251

[bookmark: _Toc391557294][bookmark: _Toc420056533]Control Characters
Control Characters are special characters used to control display and printer, including carriage return (CR), escape (ESC), tab (TAB) and so on. They are not be displayed on the screen.

See Also
http://e-words.jp/w/E588B6E5BEA1E69687E5AD97.html
http://www.c-tipsref.com/words/control_character.html
Related ID: jc_0222,jc_0232

[bookmark: _Toc382987030][bookmark: _Toc390338095][bookmark: _Toc420056534]Commentary vector signals/path signal
Vector
· Individual scholar signals that compose a vector need to have common functions, data type, and units.
· The most typical examples of a vector signal include sensor data grouped to a sequence with a location index and actuator data.
[bookmark: brxsdo9-1]Bus
As mentioned previously, signals that do not fulfill the conditions as a vector can only be grouped as a bus signal.
Bus Selector block is only used with bus signal input. Do not use it to extract scholar signal from a vector signal.

[bookmark: brxsdpt-1]Example
The following is an example of a vector signal:
	Types of vector
	Size

	Row vector
	[1 n]

	Column vector
	[n 1]

	Wheel speed subsystem
	[1 wheel number]

	Cylinder vector
	[1 cylinder number]

	Location vector based on a 2-dimensional coordination points
	[1 2]

	Location vector based on a 3-dimensional coordination points
	[1 3]

The following is an example of a bus signal:
	Bus type
	Factor

	Sensor bus
	Force vectors

	
	Location

	
	Wheel speed vector [Θlf, Θrf, Θlr, Θrr]

	
	Acceleration

	
	Pressure

	Controller bus
	Sensor bus

	
	Actuator bus

	Serial data bus
	Circulating water temperature

	
	Engine speed, front passenger seat door open

Related ID：na_0010,db_0117,jc_0222,jc_0245,db_0097,jc_0630,jc_0659

[bookmark: _Toc382987031][bookmark: _Toc390338096][bookmark: _Toc420056535]Boolean type and boolean value
Boolean type refers to a Boolean type variable, which is characteristic to MATLAB.
This document uses the term Boolean type to mean that it is a signal that cn be perceived as either true or false. Within Simulink or in C programming language, there are times where these take a form of double, uint8, or boolean, depending on the configuration or the setting of the block. However, Boolean type, per semantics, refer to the calculation result of blocks that "deal with authenticity".
Boolean value displays true or false values.
Related ID:na_0002,jc_0141,jc_0655,jc_0757,na_0037

[bookmark: _Toc382987038][bookmark: _Toc390338104][bookmark: _Toc420056536]On enumerated types
"Enumerated type data" refers to data that is restricted to a determined numerical value.
The type of blocks that can be used in an enumerated type in Simulink is limited.
Description per types of blocks that can be appointed is in “Simulink composition that supports the enumerated type”, under Help Simulink – Model – model composition – data type.
In order to use an enumerated type, it is necessary to define enumerate type using m file on MATLAB as seen in the example below.

Example: BasicColors.m
In this example, the characters of Red, Yellow, and Blue (Green) can be used.
classdef(Enumeration) BasicColors < Simulink.IntEnumType
 enumeration
 Red(0)
 Yellow(1)
 Blue(2)
Green(2)
 end
 methods (Static = true)
 function retVal = getDefaultValue()
 retVal = BasicColors. Blue;
 end
 function retVal = getDescription()
 retVal = 'This defines an enumerated type for colors';
 end
% function retVal = getHeaderFile()
 % retVal = 'imported_enum_type.h';
 % end
 function retVal = addClassNameToEnumNames()
 retVal = true;
If it is set as % true, it will be shown as BasicColors_Red on C-code.
If % is not appointed or false is selected, it will be written as Red on C-code.　
 end
 end
end

A method to customize the data types below will be provided here.
	getDefaultValue
	Except for the first value on the allowed value list, default enumerated value will be appointed.

	getDescription
	An explanation on the data type of Simulink® Coder™ generation code will be provided here.

	getHeaderFile
	It enables import of custom header file including the enumerated type definition of Simulink Coder generation code.

	addClassNameToEnumNames

	It avoids the competition of name with the identifier of Simulink Coder, making it easier to read.

For example, if a Display block is used, the display of 0,1, 2 is usually used for constant. However, a character can be displayed if an enumerated type is used.
· Description method that stipulates the constant for enumerated type in a Constant block.

Simlink Coder can generate code by also using enumerated type.
In the default setting, the enumerated type data within generated code is stipulated within a header file model_types.h generated for a model.
For example, the default code for BasicColors will be as follows:
#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_
#define _DEFINED_TYPEDEF_FOR_BasicColors_

[bookmark: 23] typedef enum {
[bookmark: 24] BasicColors_Red = 0,
[bookmark: 25] BasicColors_Yellow = 1,
[bookmark: 26] BasicColors_Blue = 2, /* Default value */
[bookmark: 27] BasicColors_Green = 2
[bookmark: 28][bookmark: type_BasicColors] } BasicColors; /* This defines an enumerated type for colors */
#endif

You can choose either blue or green as the color for the signal. As shown in the example, the letters Blue or Green can be set to the same value 2 for enumerated type.
If the example case is used in SImulink, a Green setting is interpreted as Blue.
If two letters are set for 1 constant in this way, the letters written in the m file takes precedence as with setting the initial value.

[bookmark: _Toc382987033][bookmark: _Toc390338098][bookmark: _Toc420056537]Stateflow terminology commentary

[bookmark: _Toc390338268][bookmark: _Toc420056538]Operators available for Stateflow
Operators available for use with Stateflow
　　
	Operator

	Description

	a * b
	Multiplication

	a / b
	Division (Conditional use is available)

	a %% b
	Reminder

	a + b
	Addition

	a - b
	Subtraction

	a >> b
	Shift operand a right by b bits

	a << b
	Shift operand a left by b bits

	a > b
	Compare whether the 1st operand is greater than the 2nd operand

	a < b
	Compare whether the 1st operand is smaller than the 2nd operand

	a >= b
	Compare whether the 1st operand is equal to or more than the 2nd operand

	a <= b
	Compare whether the 1st operand is less than or equal to the 2nd operand

	a == b
	Compare whether the two operands are equal

	a ~= b
	Compare whether the two operands are not equal

	a != b
	Compare whether the two operands are not equal

	a <> b
	Compare whether the two operands are not equal

	Operator
演算子
	C language bit operation is available

	
	OFF
	ON

	a|b
	Logical OR of a, b
	Bitwise OR of a, b

	a||b
	Logical OR of a, b
	Logical OR of a, b

	a&b
	Logical AND of a, b
	Bitwise AND of a, b

	a&&b
	Logical AND of a, b
	Logical AND of a, b

	a^b
	b power of a
	Bitwise XOR of a, b

	!a
	Logical NOT of a
	Logical NOT of a

	~a
	Logical NOT of a
	Two’s complement

C chart supports the following unary actions

	Operator
	Description

	a++
	Increment a

	a--
	Decrement a

You can perform element-wise assignment operations on assignment operation vector and matrix operands.
	Assignment operation
	Equivalent expression

	a = expression
	

	a += expression
	a= a + expression

	a -= expression
	a= a - expression

	a *= expression
	a= a * expression

	a /= expression
	a= a / expression

Related ID:jc_0737,jc_0742,na_0001,jc_0655,jc_0755,

[bookmark: _Toc382987035][bookmark: _Toc390338100][bookmark: _Toc420056539]Transition line condition, condition action, transition action
The entire descriptions on the transition line is referred to as the "transition label".
The following four descriptions are possible for the transition label.
1. Event
2. Condition
3. Condition action
4. Transition action
 (
Condition
) (
Event
)
Related ID：jc_0754,jc_0753,db_0151

[bookmark: _Toc390338270][bookmark: _Toc420056540]State Actions and Action Types
[bookmark: zmw57dd0e26231]entry, during, exit, bind and on actions are called as action type.

List of Action Types
	Action Type
	Short name
	Description

	entry
	en
	Executes when the state becomes active

	exit
	ex
	Executes when the state is active and a transition out of the state occurs

	during
	du
	Executes when the state is active and a specific event occurs

	bind
	-
	Binds an event or data object so that only that state and its children can broadcast the event or change the data value

	on event_name
	-
	Executes when the state is active and it receives a broadcast of event_name

	on after(n, event_name)
	-
	Executes when the state is active and after it receives n broadcasts of event_name

	on before(n, event_name)
	-
	Executes when the state is active and before it receives n broadcasts of event_name

	on at(n, event_name)
	-
	Executes when the state is active and it receives exactly n broadcasts of event_name

	on every(n, event_name)
	-
	Executes when the state is active and upon receipt of every n broadcasts of event_name

The actions for states are assigned to an action type using label notation with this general format:
name
entry:
 entry actions
during:
 during actions
exit:
 exit actions
bind:
 data_name, event_name
on event_name:
 on event_name actions

Related ID：jc_0760,jc_0762

[bookmark: _Toc382987034][bookmark: _Toc390338099][bookmark: _Toc420056541]State Transition and Flow Chart
Stateflow can represent two features of state transition diagram and flowchart.
State transition diagram is a flow where states exist and state transition is made when conditions hold. Flowchart is a flow where an action is executed at the change of condition regardless of changes of state.
Stateflow software allows a flowchart to be designed within a state transition diagram.
An entry action can be represented as flowchart in a state, which starts from default transition and moves to junctions through transition lines, as in the following example. Starting from an inner transition anebles during action by flowchart.

Additional information:
A flowchart cannot maintain its active state between updates. As a result, a flow chart always ends at a “terminating junction” (a junction that has no valid outgoing transitions).
By contrast, a state transition diagram stores its current state in memory to preserve local data and active state between updates. AS a result, state transition diagrams can begin executing where they left off in the previous time step, making them suitable for modeling reactive or supervisory systems that depend on history.

Flowchart and state transition diagram
	
	Start point
	End point

	Flowchart
	Default transition
or
State
	All endpoint are connected to the junctions

	State transition diagram
	Default transition
or
State
	Any of end points is connected to a state

Difference from common flowchart and state transition diagram
	
	Flowchart outside state
	Flowchart within state

	Flowchart
	
	

	
	State transition outside state
	State transition within state

	State transition diagram
	
	

Mixture of flowcharts and state transition diagrams with self-transition is subjected of more strict constraints from both.

Example of flowchart with self-transition
	
	Self-transition outside state
- Form self-transition outside state, reset after execution
	Self-transition within state
- Form self-transition in state, reset with during action

	
State transition

	
	

Related ID:db_0132jc_0752

[bookmark: _Toc390338272][bookmark: _Toc420056542]Backtrack
[bookmark: _Toc390338273]This example shows the behavior of transitions with junctions that force backtracking behavior in flow charts. The chart uses implicit ordering of outgoing transitions (see “Implicit Ordering of Outgoing Transitions").

Initially, state A is active and conditions c1, c2, and c3 are true, c4 is false:
1. The chart root checks to see if there is a valid transition from state A.
There is a valid transition segment marked with the condition c1 from state A to a connective junction.
2. Condition c1 is true and action a1 executes.
3. Condition c3 is true and action a3 executes.
4. Condition c4 is not true and control flow backtracks to state A.
5. The chart root checks to see if there is another valid transition from state A.
There is a valid transition segment marked with the condition c2 from state A to a connective junction.
6. Condition c2 is true and action a2 executes.
7. Condition c3 is true and action a3 executes.
8. Condition c4 is not true and control flow backtracks to state A.
1． The chart goes to sleep.

To resolve this problem, consider adding unconditional transitions to terminating junctions.
The terminating junctions allow flow to end if either c3 or c4 is not true. This design leaves state A active without executing unnecessary actions.

Related ID:jc_0751,jc_0773
[bookmark: _Toc420056543]Note on flowchart outside state
Writing a flowchart associated with a state is available either inside or outside of the state, however writing the execution order and backtracking require attention.
The following flowchart, which evaluates transition from a to b after executing flowchart outside state, appears to execute transition with the period same as that of nowger calculation.
However, transition line to b is not evaluated if the terminating point is reached via calculating transition outside state; this is a state transition diagram which stays on a.

The flowchart should be written as follows: adding a condition that does not stand at the end of flowchart outside state by design to make the transition line from a to b evaluated after executing flowchart outside state.
This enables the flowchart outside state to be executed before transition and to be evaluated with the latest value at the instant of transition. Note that this chart contains a dead path where condition never hold, which may cause a bug when the specification is changed in the future.

In contrast, the following flowchart where the internal flowchart is always calculated with execution of the state a, is written as easily comprehensible structure without dead paths.
Note, however, that it has such performance characteristic as evaluates transition from a to b in the next period of internal flowchart calculation period.
Due to this characteristic, calculation execution and transition may not be processed timely for the external flowchart. Use with sufficient attention.

Related ID:jc_0751,jc_0773

[bookmark: _Toc390338274][bookmark: _Toc420056544]How to use custom C code
Describe using the example model sf_custom.

gMyStructVar is not defined in Stateflow.
Loading of C source code is set on the Code Generation pane of Configuration Parameter.
Normally, functions of my_function are called from C source for use in Stateflow.
However, direct reference to global variables exposed by the C source is also available from Stateflow.

---------my_header.h--------------
#include "tmwtypes.h"

extern real_T my_function(real_T x);

/* Definition of custom type */
typedef struct {
	real_T a;
	int8_T b[10];
}MyStruct;

/* External declaration of a global struct variable */
extern MyStruct gMyStructVar;
extern MyStruct *gMyStructPointerVar;

---------------my_function.c--------------
#include "my_header.h"
#include <stdio.h>

/* Definition of global struct var */
MyStruct gMyStructVar;
MyStruct *gMyStructPointerVar=NULL;

real_T my_function(real_T x)
{
 real_T y;

 y=2*x;

 return(y);
}
------------------------Inside of Stateflow -----------------------------

Related ID：jm_0011

[bookmark: _Toc382987039][bookmark: _Toc390338105][bookmark: _Toc420056545]Initialization
[bookmark: _Toc382987040][bookmark: _Toc390338106][bookmark: _Toc420056546]Initial value setting in initialization
When a signal needs to be initialized, the initial values should be set correctly.
Cases that require initial values are the following.
1. When state variables are defined.
1 When blocks that have state variables are used.
A) Use the internal block settings.
B) Use the external input values.
2 When initial values are enabled for a block when a specific configuration is performed.
A) Set initial values in Merge blocks.
B) Use signals registered in the the data dictionary.
2. When signal settings (with RAM) have been defined that can be referenced from the outside.
A) Use signals registered in the the data dictionary.

[bookmark: _Toc382987041][bookmark: _Toc390338107][bookmark: _Toc420056547]List of blocks that have internal initialization values

· When initial values have been set inside a block, an initial value list using annotations is useful to allow you to visually confirm the input initial values.
(db_0140: Display of basic block parameters)
[bookmark: _Toc382987042][bookmark: _Toc390338108][bookmark: _Toc420056548]Initial values of signals registered in the the data dictionary
Set initial values for signals registered in the the data dictionary.
· Discrete block groups, such as UnitDelay, and Data Store Memory have state variables.
In the case of automatic code generation, the signal name, type and initial value can be set for state variables by matching it to the signal in the data dictionary. When using a signal defined in the data dictionary for a state variable, the respective initial values should be conformed to the same value.
· When using a signal defined in the data dictionary for a state variable.
For Discrete blocks, such as a UnitDelay, and Data Store Memory, settings are performed not when using signals defined in the data dictionary for the block output line, but for the state variables inside the block. Even if the signal name of the data dictionary is assigned to the signal line, RAM will be reserved in duplicate, which would be a waste of RAM. Please use the label name in the sense of an annotation.

	Correct: When the signal is defined for the state variables inside the block.
	Incorrect: When the signal is defined for the output signal of the block that has state variables.

	
Signal line properties setting

Unit Delay properties setting

	
Signal line properties setting

Unit Delay properties setting

	Data dictionary registration: Example of signal definition using Model Explorer

Signal objects which have been defined in Workspace can be automatically associated with signal objects and signal names of the same name, by using the disableimplicitsignalresolution (model name) command. However, for the above mentioned state variables inside the block, they get associated with the state variables inside the block and the signal name of the same name. If a globally set signal is associated with 2 variables at the same time, it is better to perform settings so that the state variables inside a block and the signal label on the signal line have different names, because the model becomes unexecutable.

[bookmark: _Toc382987043][bookmark: _Toc390338109][bookmark: _Toc420056549]Example of a block where the external input value is the initial value
 (
If the initial condition is set as
the input port, the port name will
 not be displayed unless the block size is made slightly bigger than standard.
)

· Initialization behavior
If the initial value is input from the outside, the initial value of the signal in the data dictionary and the initial value of the model will differ.
In setting the initial value in initialization, the init function is called to set to the signal either the value set inside the block or the initial value defined in the data dictionary.
Next, the step function which is the data flow executive function is executed. When the external input value is set as the initial value, the initial value setting is executed only for the first time.
Please be aware in your modeling that in C code the executive function and the execution timing both differ.

 (
Initialization explanation
init function
Set the specified initial value to the signal
step function
Set the external input value only for the first time
step
function
1 sampling
Difference in behavior in C code
step
function
R
equired computation to
compute external input value
Do not execute after the second time
function
function
function
)

[bookmark: _Toc382987044][bookmark: _Toc390338110][bookmark: _Toc420056550]Initial value settings in a system configuration that would enable initialization parameters
[bookmark: OLE_LINK8]There are system configurations where, depending on their settings, initialization parameters are enabled for combinations of conditional subsystems and Merge blocks. If initial values are required in theses combinations of conditional subsystems and Merge blocks, either of the following modeling is performed.
For instance, either of the following methods can be used for conditional subsystem Outport + Merge
● set in Outport
● set in Merge
● if an mpt signal is defined behind Merge, set in mpt signal

Exception:
When there are successive blocks with initial values and settings for each block are unnecessary for clearly showing the signal’s initial value.

Correct: Initial value set in Merge

Correct: Initial value set in mpt object

Incorrect: Despite the requirement for an initial value setting, it is not shown anywhere.

[bookmark: _Toc382987036][bookmark: _Toc390338102][bookmark: _Toc420056551]Supplement: Commentary on functions
[bookmark: _Toc359428417][bookmark: _Toc382987037][bookmark: _Toc390338103][bookmark: _Toc420056552]About Atomic Subsystem
Subsystem has a two types of settings: a setting referred to as "Atomic Subsystem" and another as "virtual". The difference between the virtual subsystem (a subsystem block in a default setting) and Atomic Subsystem is whether a subsystem is treated as a block or not.
It does not have a practical meaning in a mathematical or physical sense, but a block that simply provides visual expression is called a "virtual block".
For example, Mux block that compiles several signal line, From block that hands out the signal, and Goto block all correspond to a virtual block. Since the subsystem block in the default setting only constitutes a merely visual hierarchical structure, it also falls under virtual blocks. This subsystem is referred to as a virtual subsystem.
The line of the virtual system external bracket is displayed thinly while the one for Atomic Subsystem is displayed thickly.

The major difference between Atomic Subsystem and virtual system is that the Atomic Subsystem is detached from the external system, being not subjected to cross-border optimization.
For example, let's suppose a subsytem that consuls the external calculation result within a subsytem like in the example below. This system is calculated from the four equations below.
temp1= in1 + in2
temp2= in3 + in4
out1=in1 + in2 + temp2
out2= temp1 + in3 + in4

Example of a virtual subsystem definition
 (
Since mutual consultation is possible, no delay occurs even when it is turned into a subsystem
) (
With virtual subsystem, it is possible to consult the values within other subsystems.
) (
Virtual subsystem
)
However, Atomic System does not use internal calculation results for each subsystems. Therefore, interium output value will use a calcualtion result that is delayed by a session.
temp1= in1 + in2
temp2=in4 + in5
out1=in1+ in2 + in3
out3=in4+ in5 + in6
in3=temp2
in6=temp1
Atomic Subsystem is prohibited from directly referincing the interium calculation result to other subsystems.
 (
Since a mutual consultation is impossible, an unnecessary delay will occur within the connection between subsystems.
) (
Atomic Subsystem
)

Atomic Subsystem can select factor settings of C-source.
With Atomic Subsystem, as explained above, the inside of subsystem will become encapsulated (objectified). Depending on the relationship between before and after, one should acknowledge that a static RAM field can be secured for the output signal. Atomic Subsystem (including the addition of factor setting) should not be used carelessly for reasons such as to merely make the test easier to do. Setting that conducts factor setting will not simply have a factor name inserted within a C code. It is necessary to acknowledge that it is described as a mathematically independent system and to review under which cases Atomic Subsystem should be used.
Including the relation with the structure layer that will be mentioned later on, it is necessary to determine an operation rule per project and to determine its relationship with the guideline rules.

The difference between Atomic Subsystem and virtual subsystem (Japanese)
http: //www.mathworks.co.jp/support/solutions/ja/data/1-CYPFSL/index.html? product=SL&solution=1-CYPFSL
Atomic Subsystem (Japanese)
http： //www.mathworks.co.jp/jp/help/simulink/slref/Subsystem.html
Explanation of algebra loops (Japanese)
http: //www.mathworks.co.jp/jp/help/simulink/ug/simulating-dynamic-systems.html#f7-19688

[bookmark: _Toc382986997][bookmark: _Toc390338111][bookmark: _Toc420056553][bookmark: _Toc359428419][bookmark: _Toc153083660][bookmark: _Toc151543903][bookmark: _Toc156018045][bookmark: _Toc156895487][bookmark: _Toc160417938][bookmark: _Toc382987046]Determining guideline operation rules
Describe the deployment rules and processes for the guideline implementation.
[bookmark: _Toc382986998][bookmark: _Toc390338112][bookmark: _Toc420056554]Necessity of process definition
Automobiles need to be safe. In order to develop a safe product, various initiatives will become necessary. The model base development that utilizes simulation is suitable for developing a safer system. However, this doesn't mean that a safe system will be made just because simulations were used. Although the development of good control and good functions are necessary, process definition and the development environment that will be used will be equally important. A safe system planning will be conducted after implementing various agreements when starting the development.
[bookmark: _Toc359428420][bookmark: _Toc382986999][bookmark: _Toc390338113][bookmark: _Toc420056555] A version of MATLAB/Simulink
When starting a project, the version of MATLAB/Simulink to be used will be determined.
This includes mixing various MATLAB versions for each process.
For example, if a version that conducts automatic code generation was “R2011b”, it is possible to generate code and conduct verification with R2011b by downgrading test cases by generating test cases by having Simulink Design Verifier (SLDV), a verification tool box that uses a formal method, use R2013a.
For each project, one should decide upon which software version to be used at which stage. At that specific process, the version that was decided upon should be used by everyone.
Furthermore, it is necessary to check the latest bug report on a regular basis. Depending on the bug, one may need to change to the latest version. It doesn't 't mean that one cannot change once after making a choice. One needs to appropriately evaluate the risks of malfunctioning occurring due to a bug and risks from upgrading the version. It is necessary to always have a structure in place that allows to be changed to the latest version and to appropriately evaluate and judge what is the safest option.

[bookmark: _Toc382987000][bookmark: _Toc390338114][bookmark: _Toc420056556][bookmark: _Toc359428421]MATLAB/Simulink setting
The setting of MATLAB/Simulink specifically set for each MATLAB should be operated in a unified manner with the project. In particular, Simulink setting that affects the appearance setting requires unification. The option name to be unified will be listed below.
· Displayed standard value of a new model
· The display of a mask subsystem
· The display of a library link
· Displaying non-scholar line with a wide-width lines
· The display of a data-type terminal
· Font setting of a new model
· Block/line/annotation
· Standard value of an editor
· Using the traditional block diagram theme

[bookmark: _Toc382987001][bookmark: _Toc390338115][bookmark: _Toc420056557]Usable blocks
jm_0001 and hd_0001 display the blocks that are prohibited to use. These rules are rules determined by whether the code generation is enable/disable. However, usable blocks are not only able/disable to generate codes, they also change depending on the education level.
There are many blocks in Simulink. Depending on the block, an efficient code can be generated or a combination of several basic blocks can be represented using one function. However, when there's a difference within the SImulink skill level within an organization, one should limit the blocks and design within a designated range. However, decreasing the block number too much can deteriorate the readability. Adverse effects include increasing the user library and variation within the descriptions for the same function.
An engineer that possesses a skill level that the organization sees as the standard should be set. A list of usable Simulink block should be made and operated.
When an advanced practitioner uses an unsupported block, it should be stored within a mask subsystem, concealing it so that it cannot be seen by a general user.
In conjunction to the eduction structure, the operation rules will be determined when starting a project.
[bookmark: _Toc382987002][bookmark: _Toc390338116][bookmark: _Toc420056558][bookmark: _Ref361042731][bookmark: _Ref361042738][bookmark: _Toc359428423]Setting of the configuration to be used
[bookmark: _Toc391557367][bookmark: _Toc420056559]Optimization parameters
Optimization options highly affect codes generated through automatic code generation. With a good understanding of your own product characteristics, these options should be configured so that the setting match to the security level suitable for the product. Optimization should not be applied easily for the products that require utmost consideration to security.
In general, for automotive built-in products, computing speed is critical, and also less RAM/ROM is thought to be ideal. For example, for auto-industry products, optimization settings are enabled on the “Conditional Input Branch Execution” pane. This improves computation rate by executing only the side where the condition holds during execution of the conditional branch using Switch.
In contrast, for aviation industry, the pane is disabled since stabilization of execution speed is critical, and calculating in both sides is preferred in order to keep stable calculation period even if calculation is needed only on the side where the condition holds.
These optimization settings are also deeply related with the SIL level of function safety, as described above vary in adoption criterion depending on industries, need to be determined with understanding of your own product characteristics.
[bookmark: _Toc391557368][bookmark: _Toc391557369][bookmark: _Toc391557370][bookmark: _Toc391557371][bookmark: _Toc391557372][bookmark: _Toc391557373][bookmark: _Toc391557374][bookmark: _Toc391557375][bookmark: _Toc391557376][bookmark: _Toc391557377][bookmark: _Toc391557378][bookmark: _Toc391557379][bookmark: _Toc391557380][bookmark: _Toc391557381][bookmark: _Toc391557382][bookmark: _Toc391557383][bookmark: _Toc391557384][bookmark: _Toc391557385][bookmark: _Toc391557386][bookmark: _Toc391557387][bookmark: _Toc391557388][bookmark: _Toc391557389][bookmark: _Toc391557390][bookmark: _Toc391557391][bookmark: _Toc391557392][bookmark: _Toc391557393][bookmark: _Toc391557394][bookmark: _Toc391557395][bookmark: _Toc391557396][bookmark: _Toc391557397][bookmark: _Toc391557398][bookmark: _Toc391557399][bookmark: _Toc391557400][bookmark: _Toc391557401][bookmark: _Toc420056560]Other configurations
· Hardware implementation parameter settings
Describes model system hardware characteristics, including products and test hardware configuration setup for simulation and code generation.
Configure appropriately to be compatible with the microcomputer the project uses. Especially mind unintended utility function might be inserted unless signed integer division rounding is defined.

· Model reference parameter settings
Specified when using model references.
Options to include other models in this model, options to include this model in another model, and build options of simulation and code generation targets.

· Simulation target parameter settings
Configures a simulation target of a model including a MATLAB Function block, Stateflow chart, or Truth Table block.

[bookmark: _Toc391557405][bookmark: _Toc420056561]Configuration settings
For configuration settings, see the hisl and cgsl guidelines developed by MathWorks. The guideline describes recommended patterns for each version. Determine to accept or reject according to the needs of individual projects.

hisl_0040: Configuration Parameter > Solver > Simulation Time
hisl_0041: Configuration Parameter > Solver > Solver options
hisl_0042: Configuration Parameter > Solver > Tasking and sample time options
診断
hisl_0043: Configuration Parameter > Diagnostics > Solver
hisl_0044: Configuration Parameter > Diagnostics > Sample Time
hisl_0301: Configuration Parameter > Diagnostics > Compatibility
hisl_0302: Configuration Parameter > Diagnostics > Data Validity > Parameters
hisl_0303: Configuration Parameter > Diagnostics > Data Validity > Merge Block
hisl_0304: Configuration Parameter > Diagnostics > Data Validity > Model Initialization
hisl_0305: Configuration Parameter > Diagnostics > Data Validity > Debug
hisl_0306: Configuration Parameter > Diagnostics > Connectivity > Signal
hisl_0307: Configuration Parameter > Diagnostics > Connectivity > Bus
hisl_0308: Configuration Parameter > Diagnostics > Connectivity > Function calls
hisl_0309: Configuration Parameter > Diagnostics > Type Conversion
hisl_0310: Configuration Parameter > Diagnostics > Model Referencing
hisl_0311: Configuration Parameter > Diagnostics > Stateflow
最適化
hisl_0045: Configuration Parameter > Optimization > Implement logic signals as Boolean data (vs. double)
hisl_0046: Configuration Parameter > Optimization > Block reduction
hisl_0048: Configuration Parameter > Optimization > Application lifespan (days)
hisl_0051: Configuration Parameter > Optimization > Signals and Parameters > Loop unrolling threshold
hisl_0052: Configuration Parameter > Optimization > Data initialization
hisl_0053: Configuration Parameter > Optimization > Remove code from floating-point to integer conversions that wraps out-of-range values]
hisl_0054: Configuration Parameter > Optimization > Remove code that protects against division arithmetic exceptions
hisl_0055: Prioritization of code generation objectives for high-integrity systems

Modeling Guideline
cgsl_0301: Prioritization of code generation objectives for code efficiency
cgsl_0302: Diagnostic settings for mutilate and multitasking models

[bookmark: _Toc382987009][bookmark: _Toc390338123][bookmark: _Toc420056562]Guideline rules that are used
[bookmark: _Toc359428424]The numerical values and the list in the rules are recommended standard values. They are not numerical values that must be adhered to. For example, the hierarchizing of the na_0038 state is written to be up to 3 hierarchy level. However, there is no need to necessary operate by limiting it to 3 hierarchy. It can be altered to 5 hierarchy level.
Within the guideline, there are types of blocks to become the subject and parameters that can be changed within rules, and not just numerical values. These parameters will be listed in the "Rule Parameter List" as an attached resource material.
Furthermore, with a state in which all rules can be checked by an automatic checker as a precondition, a list has summarized which rule should be effective in which situation.
[bookmark: _Toc382987010][bookmark: _Toc390338124][bookmark: _Toc420056563]The adoption of the guideline rule and the setting of the process
It is necessary to determine which rule to be adopted in what sort of composition. It should be determined at the start of the project as to which adopted rule will be used at what sort of process. The guideline requires an appropriate operation rule that matches with the development process, such as: will the evaluation only be done at the final stage where the automatic code generation conducted or whether the adopted rules be switched according to the stages starting from the initial development phase?
[bookmark: _Toc382987011][bookmark: _Toc390338125][bookmark: _Toc420056564]The setting of the guideline rule application field and the clarification of the exclusion condition
It is necessary to determine the field to adopt the rule. For example, many rules should limit to the adoption of the model that represented the Autostar application field. With models that achieved interruption used in the basic software field or models that add process that prohibits interruption during calculation execution, there are many processes that cannot be achieved without using several special custom S-function or Data Store Memory blocks. Furthermore, with fields that only professional who specialize in said field writes down, such as the designing of a custom library block that many users use, is not a restricted area that this guideline is aiming for to begin with.
Many rules in this guideline are made by having the field in which several engineers with a moderate level edit as the target. The rules were made with the intention that a model with a high intelligibility will be made within that field. A field that can be achieved by a selected few professionals using specialized techniques should be excluded from the restriction target of the guideline by limiting said field and establishing a unique system in which only the professionals touch the field.
Furthermore, when having a control model for the entire model that is operated with RCP as a guideline rule subject, the entire model should not be set as a target easily; instead, the field needs to be limited. It it necessary to conduct a code generation and pay attention to the areas that will be implemented to the built-in microcomputer and areas that will not. Scheduler model that won’t be implemented and made only for RCP, PWM signal that is only for operating the real machine, and the interface section that includes blocks that correspond to the drivers such as CAN signal, are not the control models that this guideline applies to.
As mentioned above, when changing the application field of the guideline within the same model, a model structure that separates code generation target from fields that are not is required. Furthermore, their unique rules also need to be added.
[bookmark: _Toc362377268][bookmark: _Toc362344424][bookmark: _Toc362020647][bookmark: _Toc362010352][bookmark: _Toc362009932][bookmark: _Toc359428425][bookmark: _Toc382987012][bookmark: _Toc390338126][bookmark: _Toc420056565]The decision on the parameter that is stipulated in the guideline
This guideline or ones that the users set should not simply be adopted as they are. Instead, various parameters need to be reviewed in accordance to the characteristics of the product and the development environment tools that are being used.
For example, "in the jc_0061: display", there are parts where the organization's education state determines the block type in which the block name should be displayed, block type that should not be displayed, and the block type that could be either. There are also times where different setting values are set due to the difference in the group process of the users.
[bookmark: _Toc359428426][bookmark: _Toc382987013][bookmark: _Toc390338127][bookmark: _Toc420056566]Guideline checker adoption process determination
Whether to adopt an automatic checker or to check by eyes during the review session for the checking process should be determined first.
It is possible to used a checker created in one's own company.
Having many automatic check items will reduce the time for review. However, even if everything can be automatically checked, a review should always be conducted by a highly skilled member. Checks should not only done by an automatic checker but it is effective when combined with a review.
The rule adoption is determined by the organization’s education level (i.e., which process is being adopted) and is not only determined by the functions that the project should achieve or their size.
[bookmark: _Toc382987014][bookmark: _Toc390338128][bookmark: _Toc420056567][bookmark: _Toc359428427]Addition of the model analysis process
The designed model preferably should be set when reviewing the list of rules to be adopted by analyzing the usage tendency of the block and the school of the description style. If possible, the rule review period should be set in advance during the initial stage of the project. For example, the frequency of used block of an analysis of a simple model can be investigated by using sldiagnostics. Adjust the operation rules list by identifying blocks that are frequently used and those that aren’t. Furthermore, measure such tendencies such as at which coordination plane the block that has status variables such as UnitDelay are located at, whether to have UnitDelay outside or inside of the subsystem, whether to set abs block to the output side of the subsystem, and whether to process it at the input side after receiving a signal. The addition of rule to unify the schools and anticipating in advance the modification labor hour will lead to the improvement of re-usability later on.
[bookmark: _Toc382987015][bookmark: _Toc390338129][bookmark: _Toc420056568]Rule alteration procedure
Rules that have been decided upon once do not require to be strictly adhered to for eternity.
When changing the rule, a correct procedure and process are required. Listen to the needs of the designer and review what needs to be changed. After that, if the root issue for the alteration is caused by misunderstanding of the usage, the addition and execution of training is necessary, rather than revising the rule. However, if there is a restriction arising from the control specifications and objectives of the company or hardware (i.e., implemented microcomputer), a procedure to relax the rule according to the needs should be set.
[bookmark: _Toc382987016][bookmark: _Toc390338130][bookmark: _Toc420056569]Arrangement of development environment
Using CMM and SPICE as reference, adopt a process in accordance to the level of each project and make stipulations in accordance to the level.
Levels may refer to the maturation level of MBD infiltration, training level, skill level, and the size of the model. Otherwise, if the target product is subjected to function safety (ISO26262), SIL level will also become involved. When conducting a system design with a high SIL level, traceability should be secured for various parts within the process.
For example, if there is a project with difference in various data sets, there should be a management chart that dictates which data dictionary should be used for that project. When conducting automatic code generation, it is necessary to prove whether the operation was conduct according to the management chart.
Immediately before an automatic code generation, read the management chart into it, automatically read that data in according to the chart, and read in the correct appointed configuration set before conducting the code generation. Within this process, the following will become necessary: the appointed data dictionary, data within the work space, used configuration, and lastly, the storage of all the logs on people who packaged the models and codes and stored, people and the files that were read into the PC, and the types of codes, and the report output.
Instead of creating this system manually, an automatic generation using a tool is effective. This is because concerning the numerical value selection mistake of the data, a third-party other than the person who set the value cannot easily identify which value should be used by which project. However, if there's a document link that displays the basis, it can be determined by a third party or automatically. Combining it with the data, using the original chart with the intention of the designer written on it will decrease the possibility of generating mistakes. Such automatic system is needed to begin with even if the SIL level is not high.
Of course, a system that automatically checks the guideline rules should aslo be utilized. A system that checks the rule according to the unique decisions of the company will also become necessary. Write down an account for checker to modify an area with issues or exclude areas with no issues after checking the areas detected as errors when checking with a checker, Naturally, unique rules for the checker to determine exclusion will be required. There is a necessity to develop tools that customized these areas.
[bookmark: _Toc375558750][bookmark: _Toc375300082][bookmark: _Toc375299649][bookmark: _Toc375299001][bookmark: _Toc375297330][bookmark: _Toc375296895][bookmark: _Toc375296475][bookmark: _Toc375233598][bookmark: _Toc390338131][bookmark: _Toc420056570]Model Architecture Explanation
This chapter describes only the outline on model architecture suitable for model-based development to share the concept, since it is difficult to establish standards for model architecture which includes combination of the existing software of individual companies with the model architecture explained in the JMAAB Guideline Ver. 1.0, and Simulink also provides a variety of features appropriate for the unique circumstances of each company.

[bookmark: _Toc382987047][bookmark: _Toc390338132][bookmark: _Ref412553348][bookmark: _Ref412553352][bookmark: _Toc420056571]The roles of Simulink and Stateflow
It is possible to describe all systems to be compatible with either Simulink or Stateflow.
When Stateflow alone is used, Simulink is required for in/outputs and structuring only, but within Stateflow a variety of formula processing is possible. When using Simulink, it is possible to realize complex state variables through methods such as the use of Switch-Case blocks.
Accordingly, whether Simulink or Stateflow is used in modeling specific parts of control algorithms comes down to subjective views on which one is easier to understand. The technique to realize this should be selected depending on the training level within organizations.
In most cases RAM efficiency is worse for Stateflow than it is for Simulink. Therefore, Simulink has an advantage in computations that use simple formulas. Apart from that, Simulink is also more advantageous in instances such as state variables that can be operated with simple flip-flops and Relay blocks. When describing things with Stateflow that can be described with Simulink, the most suitable technique should be investigated in consideration of the following risks.
· Static RAM must be ensured to allow visualization of Stateflow inputs, outputs and internal variables.
· When general computational formulas are used internally, the user designs the overflow prevention.
· When the computations are done externally, the whole gets segmentalized, reducing the level of understanding of the whole.
There are cases when Stateflow obtains more efficient sources than Simulink for optimum expressions that are close to C source, but these kinds of models do not have a good appearance nor are they very easy to understand. In these kinds of cases, it is more beneficial to use S-functions instead of using Stateflow modeling.
Stateflow can note computations where specific arrangements are specified, or computations using for-loops, more efficiently than Simulink, but in recent years the use of MATLAB language for descriptions in the latest MATLAB has also become very convenient.

When modeling using Stateflow, if dealing with states as described below, readability improves by describing them as state transitions.
1. Different output values are output for identical inputs.
2. Multiple states exist. (if possible, from 3 or more)
3. Where a meaning of a state is defined, that is not an infinite number but a discrete value.
4. Inside a state, initialization (first time) and differentiation during execution (after the second time) is required.
5. Apart from state variables, input and output variables are signals that can be visualized.
For instance, in flip-flop circuits, different output values are outputted for inputs. Moreover, state variables are limited to 0, 1. However, in the sense that for the input/output variables 0, 1, both minimum and maximum state variable values 0, 1 are used, there is the possibility of classification in infinite numbers. Also, there is no differentiation between initialization and during execution inside a state. In other words, only 1 flip-flop applies out of the 4 above, so Simulink can be said to be more advantageous.
The question as to whether Simulink or Stateflow must be used for the design should be answered in consultation with several people, depending on the problems that must be implemented. Whether implementation in Stateflow is with state transitions or with flow charts should also be determined in consultation.
Things that should be handled as states are state transitions and conditional branches that are not states are flow charts. Truth tables are also classified as a conditional branch implementation method.
Moreover, when designing the above mentioned states as state transitions using Stateflow, Classic mode should be used in order to implement it as software into the control system’s embedded micro controller.
Stateflow is HDL coder supported. Mealy and Moore modes should be used when implementing as HDL coder. Moreover, when protection is required against internal electric leaks, the Moore mode is more appropriate.
These guidelines do not describe cases of use as HDL coder. Please note that these are guidelines for Simulink and Stateflow that are implemented as software in control systems.

[bookmark: _Toc382987049][bookmark: _Toc390338134][bookmark: _Ref413313390][bookmark: _Ref413313393][bookmark: _Ref413313398][bookmark: _Toc420056572]
 Hierarchical structure of a controller model
Shows the separation concept, or the layout concept, for the hierarchical structure of a controller model, as reference examples. This is not a clear standard as a rule, but it is a basic approach to modeling.
[bookmark: _Toc382987050][bookmark: _Toc390338135][bookmark: _Toc420056573]Types of hierarchies
· Building method of hierarchies
· Division into subsystems with the main purpose of space adjustments within the layer should be avoided.
· The following layer concepts should be allocated to the layers, and subsystems should be divided based on that.
· Unnecessary layer concepts do not need to be allocated to a layer.
· Multiple layer concepts may be allocated to one layer.
· Layer concept
	
	Layer concept
	Layer purpose

	Top
Layer
	Function layer
	Broad functional division

	
	Schedule layer
	Expression of execution timing (sampling, order)

	Bottom
Layer
	Sub function layer
	Detailed function division

	
	Control flow layer
	Division according to processing order (input → judgment → output, etc.)

	
	Selection layer
	Divide (select output with Merge block) into format that switches the active subsystem and execute

	
	Data flow layer
	Layer for non-separable computations

[bookmark: _Toc382987051][bookmark: _Toc390338136][bookmark: _Toc420056574]Layout method for top layer
There are principally 3 types of layout methods for the top layer.
· Simple control model
Represents function layer and schedule layer in the same layer. Here, function = execution unit.
Example: When the control model only has one sampling cycle, and all functions are arranged in execution order
· Complex control model Type α
Schedule layer is placed at the top.
Makes integration with the hand-written code easy, but functions are divided and the readability as a model is reduced.
· Complex control model Type β
The function layers are arranged at the top, and schedule layers are built below the individual function layers.
 (
The subsystem indicated in bold is set to be an atomic subsystem.
) (
Schedule layer
Function layer
Schedule layer
Schedule layer
Function layer
Function layer
S1
C1
S2
C2
S1
S2
C1
C2
Example
Type α
Example
Type β
Subsystem for low speed operation
Subsystem for high speed operation
Sensing function subsyste
m
Control function subsyste
m
)

[bookmark: _Toc382987052][bookmark: _Toc390338137][bookmark: _Toc420056575]: Modeling method for function layers and sub-function layers.

· Division into subsystems by function. The respective subsystems represent ‟1 functionˮ.
· ‟1 functionˮ is not necessarily an execution unit. For that reason, the respective subsystems cannot necessarily be made into Atomic Subsystems.
(For type β in the example above, it is appropriate to make the function layer subsystems into virtual subsystems. If they are changed into an Atomic Subsystem, algebraic loops are created.)
· Using annotation, the function overview must be either described on the layer or included in the subsystem overview and displayed as an annotation.
· If there are several big functions, partitioning of the model, using model references for each function, should also be considered.

[bookmark: _Toc382987053][bookmark: _Toc390338138][bookmark: _Toc420056576]Modeling method for schedule layers
Sampling intervals and priority order should be set.
The previous guideline corresponds to the approach that uses ‟jc_0321: Trigger layerˮ.

· Point for attention when setting multiple sampling intervals
In connected systems with varying sampling intervals, a signal is required for the fast cycle for times even when the signal for the slow cycle has not been computed. When connecting using different sampling intervals, a pinned RAM area is always required. For that reason, always split systems for each different sampling times in the top layer, without connecting different sampling times in the bottom layer.

· Setting priority ranking
This is important when designing multiple different independent functions. It is advisable that computation sequences are freely determined as much as possible depending on all subsystem connections.
For the priority order, the following two need to be set: priority ranking for different rates and priority ranking within an identical sampling rate.

· Implementation method for sampling interval and priority ranking
The described methods can broadly be divided into 2 types.
1. Perform setting of sampling times and priority rankings for subsystems or blocks.
2. Using conditional subsystems, the user sets independent rankings to match the scheduler.
Patterns exist here with various conditions, such as configuration multi-rate and single rate, Atomic Subsystem setting, use/non-use of model references. Which among these are employed is closely linked to the C code implementation method, and substantially varies depending on the project status.
The typical factors that are substantially affected are listed below.
· On the model side
· Do several sampling times exist in the model?
· Is it a model that realizes several independent functions?
· Use of model references
· Number of models (whether there are multiple sources with code generated in Simulink)
· On the source side
· Use/non-use of real-time OS
· Consistency of usable sampling intervals and computation cycles to be implemented
· Applicable area (application domain or basic software)
· Source code type: AUTOSAR conform - not conform - not supported.
· RAM, ROM specifically RAM margin

In consideration of the above, the corresponding patterns will vary depending on the use case, so we will introduce the patterns in the appendix material.

[bookmark: _Toc382987054][bookmark: _Toc390338139][bookmark: _Toc420056577] Modeling method for control flow layers
The arrangement of the control layer is a layer used to express all input processing, intermediate processing and output processing in one function. Significance is attached to the arrangement of blocks and subsystems. Multiple mixed small functions are grouped by dividing them between the 3 biggest stages of input processing, intermediate processing and output processing, which form the conceptual basis of control. The general configuration image is close to the data flow layer, and it is represented in a horizontal line. The difference with a data flow layer is its construction from multiple subsystems and blocks.
In control flow layers, the horizontal direction indicates processing with different significance, and blocks with the same significance are lined up vertically.

 (
Input processing
) (
Output processing
) (
Intermediate
processing
)

Block groups are arranged horizontally and as a whole are arranged by being given a provisional meaning.
The red borders signify the delimiter for the processing that is not visible, and the red borders correspond to objects called virtual objects. Using annotations to mark the delimiters makes it easier to understand.

 (
Output processing
) (
Intermediate processing
) (
Input processing
)

Control flow layers can co-exist with blocks that have a function.
They are positioned in the middle area between the sub-function layer and the data flow layer.
Control flow layers are used when the number of blocks becomes too large when all is described in the data flow layer and when units that can be given the minimum partial meaning are made into subsystems. Attaching significance to the placement organizes the internal layer configuration and makes it easier to understand. It is also effective in improving maintainability by avoiding the creation of unnecessary layers.
Even if it consists of only blocks, and not a mix of subsystems and blocks, if the horizontal layout can be split into input/intermediate/output, it is a control flow layer.
[bookmark: _Toc382987055][bookmark: _Toc390338140][bookmark: _Toc420056578]Modeling method for selection layers
Selection layers can be written vertically or horizontally. (There is no significance to which orientation is chosen)
Selection layers are mixed with control flow layers.
Because there are switch functions for subsystems where only either one runs depending on the conditional control flow inside the red border, this is termed a selection layer. It is also described as a control flow layer because the whole lines up initial processing/intermediate processing (conditional control flow)/output processing. In the control flow layer, the horizontal direction indicates processing with different significance, and parallel processing with the same significance is lined up vertically. In selection layers, no significance is attached to the direction they are arranged in, but they show layers where subsystem groups are described where only either one runs.
Example:
· Switching of coupled functions between running upwards or downwards, changing in chronological order.
· Switching to setting where the computation switches after the first time (immediately after reset) and second time.
· Switching between destination A and destination B.

 (
The horizontal sequence is the control flow layer
) (
Layer with a conditional control flow layer description is represented as a selection layer.
)

[bookmark: _Toc382987056][bookmark: _Toc390338141][bookmark: _Toc420056579] Modeling method for data flow layers
A data flow layer is the layer below the control flow layer and selection layer.
When it represents one function as a whole, and the roles of input processing, intermediate processing and output processing cannot be divided, it is a data flow layer. For instance, systems performing one continuous computation that cannot be split. Data flow layers do not permit co-existence with subsystems apart from those where exclusion conditions apply.
Exclusion conditions: Co-existence with the following subsystems is allowed.
· Subsystems where reusable functions have been set.
· Masked subsystems that are registered in the Simulink standard.
· Masked subsystems registered in a library by the user.

Example of a simple data flow layer

Example of a complex data flow layer

When input processing and intermediate processing cannot be clearly divided in a layout as the one above, they are represented as a data flow layer.
A data flow layer becomes complicated when both the feed forward reply and the the feedback reply from the same signal are computed at the same time. Even when the number of blocks in this type of cases is a bit large, the creation of a subsystem in between should not be included in the design when the functions cannot be clearly divided. When meaning is attached through division, please design as a control flow layer.

[bookmark: _Toc420056580]Relation between embedded implementation and Simulink models
Running with the actual embedded micro controller requires embedding the C code generated from the Simulink model into the micro controller. This will substantially affect the Simulink model configuration, depending on to what extent the Simulink model will model the functions concerned, on how it is embedded, and on how the schedule on the embedded side is set.
There will be a significant effect if the tasks of the embedded micro controller to be implemented and the tasks used by the Simulink model are different.
[bookmark: _Toc382987057][bookmark: _Toc390338142][bookmark: _Toc420056581]AUTOSAR Concept
Here, we will not explain the AUTOSAR standard, but rather we will explain the concept of AUTOSAR. Users do not have to conform fully to AUTOSAR, but they must have an understanding of it and use it as a reference in modeling.
[bookmark: _Toc382987058][bookmark: _Toc390338143][bookmark: _Toc420056582]What is the AUTOSAR software platform concept?
When designing a control model, you must use the AUTOSAR software platform concept and examine whether the model you are designing classifies as an application or as basic software.
A model that mixes application and basic software must be split at the design stage.
The AUTOSAR software platform concept
· High capacity, low speed, regular processing is dealt with in the application layer.
· High speed or irregular driver types are dealt with in the basic software layer
The AUTOSAR software platform is represented as the configuration in Fig. 10.1.
 (
Complex
Drivers
Application layer
Runtime Environment (RTE)
Basic software layer
Services Layer
ECU Abstraction Layer
Microcontroller Abstraction Layer
)

[bookmark: _Ref335437616][bookmark: _Toc333317644]Fig. 10.1 　System configuration example (see Architecture – Overview of Software Layers Top and view Coarse view
AUTOSAR Release 4.0 Document Title: Layered Software Architecture.)

For instance, in designing an engine control model, no model is built where all computations are executed with the interrupt as a base point, but computations that are shared for all cylinders are performed through regular computations in the application area. For instance, computations of the current emissions status or the target torque. And computation results, which have been computed with the application through the RTE when an irregular interrupt occurs from the basic software area, are received, and the actuator is actualy activated. It is the concept of AUTOSTAR for computations of the basic software area to be as simple as possible and for shared computation functions to be placed in the application.
When all the modeling is done in Simulink, it is advisable to have as many single computations in the interrupt area as possible. A design is required that places controls that are as simple as possible on the interrupt side, reduces the computation volume for that instant, and acquires results that, when possible, are computed at regular intervals. If possible, PID standard computations should not be included. Functions that only execute the designated actions are ideal. However, necessary computations should not be excluded. For instance, for fault diagnosis, computations where a conclusion must be drawn at that instant should be performed even if they are complex computations.
For those parts that run in a slower layer than the interrupt processing and receive commands to an actuator which is faster than the application execution speed, the direct execution code should not be given, but a way should be devised so that the target value or gradient until the the next command is delivered is obtained during sampling through linear interpolation.
[bookmark: _Toc420056583][bookmark: _Toc391557427]RCP and AUTOSAR software platform
Modeling using devices such as RCP is pretty similar to the AUTOSAR software update in concept. Of course, generated codes do not conform to the AUTOSAR specifications. For example, I/O software of RCP allows vender-provided S-functions to be linked, and a user designs the application domain. Custom functions in the application domain and S-functions are wired in the Simulink block diagram, which does not require consciousness of interaction with RAM and so on.
The output C code runs on the real-time OS, and I/O software and applications created by Simulink are output into different source files, the real-time operation part and the part handled as interrupt are separated naturally. Users do not have to be conscious of those platforms; I/O S-function created by vender is executed when needed, and application model is modeled without consciousness of content and timing of I/O processes and behaves.

The actual control model/software which has such software structure has more advantages. Since RCP is capable of concentrate on developing application without so much regard to software structure, those use AUTOSAR software platform naturally. In other words, if your own product does not conform the AUTOSAR platform in the development using the AUTOSAR platform on RCP, you must customize the generated code and held back from sharing in the fruits of model-based development.

[bookmark: _Toc382987059][bookmark: _Toc390338144][bookmark: _Toc420056584]Single-task and multi-task
The realization method for the scheduler in embedded software has single-task and multi-task settings.
[bookmark: _Toc382987060][bookmark: _Toc390338145][bookmark: _Toc420056585]Single-task

For single-task, basic sampling is 2 msec, and when sampling rates of 2 msec, 8 msec and 10 msec exist within the model, pseudo sampling rates of 8, 10 msec are created in the basic 2 msec sampling rate. The execution frequency per 2 msec is counted as follows: 8 msec is executed once for every four 2 msec cycles, and 10 msec is executed once for every five. The sampling interval function specified by this frequency is executed. Attention needs to be paid to the fact that there is generally as much complex processing as functions of a lower frequency, and the 2 msec, 8 msec and 10 msec cycles are all computed with the same 2 msec. Because all computations need to be completed within 2 msec for embedded software running in real-time, the 8 msec and 10 msec functions are in this kind of cases split into several so that all 2 msec computations are of an almost equal volume. In this way the computation volume per cycle is reduced through partitioning, and the CPU load is equally divided. For that reason the 10 msec sampling function is divided into the following 5.
	Fundamental frequency
	Offset

	10msec
	0msec

	10msec
	2msec

	10msec
	4msec

	10msec
	6msec

	10msec
	8msec

In the same way, the 8 msec sampling function is divided into 4.
However, as equal division is not always possible, functions cannot be allocated to all cycles, but it is important to keep a uniform CPU load.
 (
Function 3
-1
 -2
 -3
 -4
 -5
) (
Function 2
-1
 -2
 -3
) (
Function 1
) (
10msec
) (
8msec
) (
2msec
) (
All computations must be contained within the 2 msec cycle.
)

· How to set frequency-divided setting of task
Set Tasking mode for periodic sample times to Single Tasking for Simulink task setting.

Then enter values of “sampling period, offset” in the subsystem’s “Sample Time” setting field. A subsystem to which a sampling period can be specified is an atomic subsystem.

[bookmark: _Toc382987061][bookmark: _Toc390338146][bookmark: _Toc420056586]Multi-task
Multi-task sampling is executed using a real-time OS that supports multi-task sampling. In single-task sampling, described above, equalizing the CPU load is not done automatically, but a person divides the functions and allocates them to the appointed task. In multi-task sampling, the CPU performs the computations automatically in line with the current status, and there is no need for a person to set detailed settings. Computations are performed and results are output starting from the task with the highest priority, but task priorities are specified by a person. In most cases fast tasks are assigned highest priority.
 (
Function 1
) (
Function 2
) (
10msec
) (
8msec
) (
2msec
) (
Function 3
)
It is considered important that computations are completed within the cycle, including slow tasks, and when a high priority computation has been processed and the CPU is freed up, the computation for the system with the next priority ranking is performed. If a high priority computation process comes in during a computation, the low priority computation is aborted and the high priority computation process is executed first.

[bookmark: _Toc382987063][bookmark: _Toc390338148][bookmark: _Toc420056587]Effect of connecting subsystems with sampling differences
If subsystem B with a 20 msec sampling interval uses the output of subsystem A with a 10 msec sampling interval, the output result of subsystem could change while subsystem B is computing. If values change during the process, computation results in subsystem B can result in unexpected values. For instance, a comparison is made in system B’s first computation with the system A output, the result is computed with the conditional judgment based on this output, and then it is compared again at the last computation in system B. If the subsystem A output at this point is a different value, it may happen that the logic created with true, true has become true, false, and an unexpected computation result is generated. To avoid this type of malfunction, if tasks generally change, output results from subsystem A are fixed immediately before they are used by subsystem B. In other words, even if subsystem A values change during the process, the values that subsystem B are looking at is in a different RAM, so no effect is apparent.
When a model is created in Simulink and a subsystem is connected that has a different sampling interval in Simulink, Simulink automatically reserves the required RAM.
However, if input values are obtained with a different sampling interval through integration with hand-coded code, the engineer who does the embedding work should design these settings. In the RTW concept using AUTOSAR, different RAMs are all defined at the receiving and exporting side.

 (
Function 3
-1
-2
-3
-4
-5
) (
Function 2
-1
-2
-3
) (
Function 1
) (
10msec
) (
8msec
) (
2msec
) (
When Function 2 uses computation results from Function 1, computation results for Function 1 do not change during computation for Functions 2-1, 2-2, 2-3, but there is a

possibility that Functions 2-1, 2-2, 2-3 use different values that have been computed on the respective different time axes.
It is advisable to allot a different RAM for signal values with a different rate.
)

Single-task
Signal values are the same within the same 2 msec cycle, but please note that for different 2 msec cycles the computation value is different to the preceding one. If Function 2-1 and 2-2 used signal A of Function 1, then 2-1 and 2-2 will be using results from different times, so please be aware.

Multi-task
For multi-task you cannot specify at what point to use the computation result to use. With multi-task, always store signals for different tasks in a new RAM.
Before new computations are performed within the task, values are all copied in one go.

 (
Function 1
) (
Function 2
) (
10msec
) (
8msec
) (
2msec
) (
Function 3
If Function 2 uses computation results of Function 1, there is the possibility that computation results from Function 1 will replace them while Function 2 is computing.
For that reason, computation results that vary at the point when computation starts for each rate are generally stored in a different RAM.
Maintain value at the start of the task.
Do not immediately use values that are being updated.
)

[bookmark: _Toc420056588]Simple checking sample program for guidelines
[bookmark: _Toc390338322]Some guideline rules allows check by setting automatic check with conditions as well as check using Model Adviser. Here show some sample programs for the method to set automatic check setting.
Model-based development enables reduction of man-hour and product quality improvement using such automatic correction. It is necessary not only requiring users to keep to established rules but also improving usability by correcting bugs automatically.
[bookmark: _Toc420056589]Check by automatic setting
[bookmark: _Toc420056590]na_0004: Simulink model appearance settings
[bookmark: OLE_LINK36]SettingItems= {...
 ...% Display option
 'ModelBrowserVisibility', 'off' 'browser display', ...
 'ScreenColor', 'white' 'screen color',...
 'StatusBar', 'on' 'status bar',...
 'ToolBar', 'on', 'toolbar',..
 'ZoomFactor', '100' 'zoombar', ...
 ...% port display option
 'ShowPortDataTypes', 'off', 'port data types';...
 'ShowLineDimensions', 'off', 'signal dimensions';...
 'ShowStorageClass', 'off', 'storage class';...
 'ShowTestPointIcons', 'on', 'testpoint indicator';...
 'ShowSignalResolutionIcons', 'on', 'testpoint indicator';...
 'ShowViewerIcons', 'on', 'viewer indicator';....
 'WideLines', 'on', 'display wide lines for non-scalars';...
 };
[bookmark: OLE_LINK47]for k=1: size(SettingItems,1)
 set_param(0,SettingItems{k,1},SettingItems{k,2})
 set_param(bdroot,SettingItems{k,1},SettingItems{k,2})

end

set_param(0 is setting for Simulink. If it is applied, the setting above is inherited to the newly created model files. The setting is enabled only after it is rerun during Simulink restart. The setting is executed during Simulink restart by describing it to the startupsl.m file on the path.
To change the settings of existing file, use set_param(bdroot, SettingItems{k,1},SettingItems{k,2}).

Reference: Simulink/modeling/model configuration/block/model parameters

[bookmark: _Toc420056591]db_0043: Model font and font size
SettingItems= {...
 ...%% font setting
 ...% block default setting
 'DefaultBlockFontName', 'MS UI Gothic', 'default block font name'; ...
 'DefaultBlockFontSize', 12, 'default block font size', ...
 'DefaultBlockFontWeight', 'normal' 'default block font thickness'; ...
 'DefaultBlockFontAngle', 'normal', 'default block font tilt', ...
 ...% default line font settings
 'DefaultLineFontName', 'MS UI Gothic', 'default line font name' ; ...
 'DefaultLineFontSize', 12, 'default line font size'; ...
 'DefaultLineFontWeight', 'normal', 'default line font weight'; ...
 'DefaultLineFontAngle', 'normal', 'default line font tilt; ...
 ...% default annotation font settings
 'DefaultAnnotationFontName', 'MS UI Gothic', 'default annotation font name; ...
 'DefaultAnnotationFontSize', 14, 'default annotation font size'; ...
 'DefaultAnnotationFontWeight', 'normal', 'default annotation font weight'; ...
 'DefaultAnnotationFontAngle', 'normal', 'default annotation font orientation'; ...
 };

for k=1: size(SettingItems,1)
 set_param(0,SettingItems{k,1},SettingItems{k,2})
 set_param(bdroot,SettingItems{k,1},SettingItems{k,2})
end

Executing set_param(bdroot, SettingItems{k,1},SettingItems{k,2}) does not change entirely. To change file content entirely including content manually modified, using find_system is required to search all information within the model file to change, however, it may change the intendedly modified description. To avoid this, it is recommended to complete settings in the stage of new creation.

[bookmark: _Toc420056592]na_0001: Bitwise Stateflow operators

The following is an example of changing the settings of a Stateflow Chart contained in the existing model.

 rt = sfroot;
 modelH = get_param(bdroot, 'Handle');
 rt = rt.find('-isa', 'Simulink.BlockDiagram', '-and', 'handle', modelH);
 result = rt.find('-isa', 'Stateflow.Chart');
 if ~isempty(result)
 for n1=1:length(result)
 result(n1).EnableBitOps=true;
 end
 end

[bookmark: _Toc381885191][bookmark: _Toc383804073][bookmark: _Toc420056593]Update history
■　Update time and date
	Date
	Change

	02.04.2001
	NAMAAB Initial document Release, Version 1.0(Eng)

	xx.04-2003
	JMAAB Initial document Release,Version 1.0(Jp)

	04.27.2007
	MAAB Version 2.0 Update release(Jp&Eng)
This document is a collaboration of JMAAB and NAMAAB.

	07.30.2011
	Version 2.2 Update release(Eng)

	08.31.2012
	Version 3.0 Update release(Eng)

	05.30.2013
	Version 3.0 Japanese localization(Jp)

	31.03.2015
	Version 4.0 Update release(Jp&Eng)

	19.06.2015
	Version 4.01 correct (Jp&Eng)

[bookmark: _Toc381885192][bookmark: _Toc383804074][bookmark: _Toc420056594]Termination rule
[bookmark: _Toc381885193][bookmark: _Toc383804075][bookmark: _Toc420056595]Removed in version 2.2
JM_0013: Annotations: The rule was original written due to a printing bug in R13. The bug was fixed in R14 SP1.
[bookmark: _Toc381885194][bookmark: _Toc383804076][bookmark: _Toc420056596]Removed in version 3.0
No guidelines were removed in version 3.0
[bookmark: _Toc381885195][bookmark: _Toc383804077][bookmark: _Toc420056597]Removed in version 3.1
No guidelines were removed in version 3.1
[bookmark: _Toc381885196][bookmark: _Toc383804078][bookmark: _Toc420056598]Removed in version 4.0
· Removed after being integrated to another rule or altered
	Integration source ID
	Supporting ID

	jc_0221: Sentences that can be used for the name of the signal line
	jc_0222

	na_0030: Sentence that can be used for a Simulink path name
	

	
	

	jm_0010: Names of Import block/Outport block
	na_0005, jc_0082, jc_0083

	jc_0081: *Icon display* of Inport block/Outport lbock
	

	
	

	db_0148: Transition condition pattern of the flow chart
	jc_0742

	db_0150: Transition condition pattern of the state
	

	
	

	db_0149: Condition action pattern of the flow chart
	jc_0743

	na_0019: Restricted Variable Names
	jc_0251

· Deleted because it became unnecessary with the recent year's MATLAB version
jc_0541: Usage of adjustable parameter at Stateflow

· Deleted because contents are not rule.
db_0133: Usage of a flow chart pattern
(It is covered by db_0132,jc_0770,jc_0771,db_0134,db_0159 and db_0135)

[bookmark: _Toc383804079][bookmark: _Toc420056599]Moved to attachment in version 4.0
They were moved to appendix. And their IDs were deleted.

· Since they are not guideline rules but how to think, they were moved to appendix.
db_0040: Hierarchy structure of the model
jc_0301: Controller model
jc_0311: Top layer/root level
jc_0321: Trigger layer
jc_0331: Structure layer
jc_0341: Data flow layer

· Rules which explain functions of Simulink were moved to appendix.
na_0032: Use of merge blocks
jc_0021: Model diagnostic settings
jc_0351: Methods of initialization

· Since rules about development process are not treated in this guidelines, they were moved to appendix
na_0026: Consistent software environment
na_0027: Use of only standard library blocks

[bookmark: _Toc381885197][bookmark: _Toc383804080][bookmark: _Toc420056600]The flow of the style guideline revision
 (
2001
April 2003
April 2007
2003
2007
2010
NAMAAB
V1.0
V2.0
JMAAB
V1.0
(JMAAB)
V2.2
July 2011
May 2013
V2.0
 Free translation
 English translation
 Rule addition
 and integration
V3.0
August 2012
V4.0
2013
April 2001
V3.0
 Progression of the free translation
V1 was formed from the 4 companies of Toyota,
Ford, Daimler, and GM.
There are no JMAAB and NAMAAB organizations.
MAAB
JMAAB started its activities in April 2001
V4.0
)

249
© Copyright 2013 JMAAB. All rights reserved.
image82.jpeg

image83.jpeg

image84.jpeg

image85.jpeg

image86.jpeg

image87.jpeg

image88.jpeg

image89.jpeg

image90.jpeg

image91.emf
ActionIn1Out1If Action Subsystemu1if(u1 > 0)elseIfIn1Out1Variant SubsystemInLineVarModel Not FoundModel Variants<EngTq, StartTq1>

<StartTq2>

TotalTq

Subsystem2

EngTq

StartTq1

StartTq2

<TotalTq>

StartTq1

EngTq

StartTq2

image92.emf
ActionIn1Out1If Action Subsystemu1if(u1 > 0)elseIfIn1Out1Variant SubsystemInLineVarModel Not FoundModel Variants<Sig1>

<StartTq2>

TotalTq

Subsystem2

EngTq

StartTq1

StartTq2

<TotalTq>Sig1

StartTq1

EngTq

StartTq2

image93.jpeg

image94.png

image95.png

image96.jpeg

image97.jpeg

image98.png

image99.png

image100.emf
2

In2

boolean

1

Out1

 ~= 0

Switch

uint16

1

In1

uint16

3

In3

uint16

NOT

Logical

Operator

boolean

image101.emf
1

In1

uint16

2

In2

boolean

3

In3

uint16

T

F

Switch

uint16

true

Constant

boolean

AND

Logical

Operator

boolean

1

Out1

image1.jpeg

image102.emf
2

In2

uint8

1

Out1

 ~= 0

Switch

uint16

1

In1

uint16

3

In3

uint16

== 0

Compare

To Constant

boolean

image103.png

image104.jpeg

image105.png

image106.png

image107.png

image108.png

image109.png

image110.png

image111.png

image2.emf
1

In1

1

Out1

V6_signal12_Contrl1_EgRpm1

image112.png

image113.png

image114.png

image115.png

image116.png

image117.png

image118.png

image119.png

image120.png

image121.png

image3.emf
1

In1

2

In2

3

In3

4

In4

5

In5

6

In6

7

In7

8

In8

9

In9

10

In10

11

In11

12

In12

1

Out1

2

Out2

bus_name3

klmn

abc

bus_name2

fghij

abcdefghijklmn

uvw

<abcdefghijklmn>

<abc>

xyz

rst

bus_name1

opq

lmn

hij

bus_all

efg

bus_name_finla

opqr

image122.png

image123.jpeg

image124.wmf

image125.png

image126.wmf

image127.png

image128.wmf

image129.wmf

image130.wmf

image131.jpeg

image4.jpeg

image132.jpeg

image133.emf
Subtract2

1

In2

1

Out2

1

Gain

z

1

Unit Delay

Subtract1

2

In4

2

Out3

1

Gain1

z

1

Unit Delay1

image134.emf
1

In2

1

Out2

1

Gain

z

1

Unit Delay

2

In4

2

Out3

1

Gain1

z

1

Unit Delay1

Subtract

Subtract1

image135.emf
【誤】

【正】

【正】

【正】

【正】

【正】

Add

Gain

Gain

Z

-2

Delay

z

1

Unit Delay

1

Out1

1

In1

Gain

Gain1

z

1

Unit Delay1

2

Out2

2

In2

Gain2

Gain2

Z

-2

Delay1

Gain

Gain3

z

1

Unit Delay2

3

Out3

3

In3

Gain2

Gain4

4

In4

Add1

Z

-2

Delay2

Gain

Gain5

z

1

Unit Delay3

4

Out4

5

In5

Gain2

Gain6

6

In6

Gain

Gain7

Z

-2

Delay3

z

1

Unit Delay4

5

Out5

7

In7

Gain

Gain8

z

1

Unit Delay5

6

Out6

8

In8

Gain2

Gain9

image136.png

image137.png

image138.png

image139.png

image140.png

image5.png

image141.png

image142.jpeg

image143.wmf

image144.wmf

image145.wmf

image146.emf
Subsystem1Subsystem

TerminatorGround

 ~= 0

Switch

0

Constant

A

Data Store

Read

A

Data Store

Write

A

Data Store

Memory

1

Constant1

A

Data Store

Write1

A

Data Store

Read1

Add

1

In1

Enable

Trigger

1

Out1

image147.emf

image148.png

image149.jpeg

image6.wmf
Description: Local language can be used.

image150.png

image151.jpeg

image152.png

image153.png

image154.jpeg

image155.jpeg

image156.jpeg

image157.jpeg

image158.jpeg

image159.jpeg

image7.png

image160.jpeg

image161.jpeg

image162.jpeg

image163.png

image164.png

image165.png

image166.png

image167.jpeg

image168.png

image169.jpeg

image8.png

image170.jpeg

image171.jpeg

image172.jpeg

image173.jpeg

image174.jpeg

image175.emf
Step

double

1

3

*

Multiport

Switch

double

1

Constant

double

2

Constant1

double

3

Constant2

double

1

Display

image176.jpeg

image177.jpeg

image178.jpeg

image179.emf
内部初期化

IC=初期値：外部入力

R=外部初期化

IC=初期値：外部入力

外部初期化

=初期値：外部入力

内部初期化

X0=初期値：外部入力

u

IC

y

1

z

Unit Delay External IC

double

x0

u

Z

-1

 Delay

double

u

R

IC

y

1

z

Unit Delay Resettable External IC

double

x0

u

Z

-1

Resettable Delay1

double

1

Out1

3

R1

boolean

2

Out2

3

Out3

4

Out4

1

u

double

2

IC

double

z

1

Unit Delay

boolean

false

Constant

boolean

z

1

Unit Delay1

double

 ~= 0

Switch

double

5

Out5

1

u1

double

1

u2

double

z1Unit Delay2

booleanfalseConstant1

booleanz

1

Unit Delay3

double

ORuint86Out6 ~= 0double1

u3

double

1

u4

double

1

u5

double

2

IC1

double

2

IC2

double

2IC3double2

IC4

double

2

IC5

double

3R2boolean3

R3

boolean

 ~= 0

double

RR

u

R

u

IC

IC

IC

ICu

image9.png

image180.jpeg

image181.png

image182.png

image183.png

image184.png

image185.jpeg

image186.jpeg

image187.jpeg

image10.jpeg

image188.jpeg

image189.png

image190.png

image191.png

image192.png

image193.png

image11.jpeg

image194.png

image195.jpeg

image196.png

image197.png

image198.png

image199.png

image200.png

image12.jpeg

image201.png

image202.png

image203.png

image204.png

image205.png

image206.png

image207.png

image208.png

image209.png

image210.jpeg

image211.jpeg

image212.jpeg

image213.jpeg

image214.emf
1

In1

1

Out1

2

In2

3

In3

4

In4

5

In5

 ~= 0

Switch

[In1]

Goto1

[In2]

Goto2

[In3]

Goto3

[In4]

Goto4

[In5]

Goto5

[In1]

From

 ~= 0

Switch1

[In1]

From1

 ~= 0

Switch2

[In1]

From2

 ~= 0

Switch3

[In1]

From3

 ~= 0

Switch4

[In1]

From4

1

Constant

2

Constant1

3

Constant2

4

Constant3

5

Constant4

6

Constant5

image215.jpeg

image216.jpeg

image217.jpeg

image218.jpeg

image219.jpeg

image220.jpeg

image13.png

image221.jpeg

image222.jpeg

image223.jpeg

image224.jpeg

image225.jpeg

image226.jpeg

image227.emf
3142

Constant

uint16

Divide

uint32 (2)

1

In1

uint16 (2)

1

Out1

1000

Constant1

uint16

Product

uint32 (2)

uint16

Data Type Conversion

uint16 (2)

整数でオーバーフロー = on

uint32

Data Type Conversion1

整数でオーバーフロー = on

uint32

image228.jpeg

image229.emf
3.142

Constant

sfix16_En12

1

In1

sfix16_En12

Product1

sfix32_En24

1

sfix16_En12

sfix16_En12

整数でオーバーフロー = on

2

Out2

image230.jpeg

image14.png

image231.jpeg

image232.jpeg

image233.png

image234.png

image235.jpeg

image236.jpeg

image237.jpeg

image238.jpeg

image239.emf
Merge

Merge

double

u1

case [1]:

case [2 3]:

default:

Switch Case

action

action

action

case: { }

In1Out1

Switch Case Action Subsystem

double

case: { }

In1Out1

Switch Case Action Subsystem1

double

default: { }

In1Out1

Switch Case Action Subsystem2

double

1

In1

uint8

2

In2

double

3

In3

double

4

In4

double

1

Out1

image240.png

image15.png

image241.emf
Merge

Merge

double

u1

case [1]:

case [2 3]:

Switch Case

action

action

case: { }

In1Out1

Switch Case Action Subsystem

double

case: { }

In1Out1

Switch Case Action Subsystem1

double

1

In1

uint8

2

In2

double

3

In3

double

1

Out1

image242.png

image243.jpeg

image244.jpeg

image245.emf
Merge

Merge

double

u1

case [1]:

case [2 3]:

Switch Case

action

action

case: { }

In1Out1

Switch Case Action Subsystem

double

case: { }

In1Out1

Switch Case Action Subsystem1

double

1

In1

uint8

2

In2

double

3

In3

double

1

Out1

image246.png

image247.png

image248.png

image16.png

image249.jpeg

image250.jpeg

image251.jpeg

image252.jpeg

image253.jpeg

image254.jpeg

image255.jpeg

image256.jpeg

image257.jpeg

image258.jpeg

image17.png

image259.emf
Nomal

en:

 Cond = Nomal;

Nomal1

en:

 Cond = Hot;

Cold

en:

 Cond=Cold;

[Temp > LOW1]

[Temp > HIGH1]

1

[Temp <= HIGH2]

[Temp <= LOW2]

2

image260.emf
Cold

en:

 Cond=0;

Nomal

en:

 Cond = 1;

Nomal1

en:

 Cond = 2;

[Temp > 0]

[Temp <= -20]

2

[Temp <= 100]

[Temp > 120]

1

image261.png

image262.png

image263.png

image264.png

image265.png

image266.png

image267.png

image268.png

image18.png

image269.png

image270.jpeg

image271.png

image272.png

image273.png

image274.png

image275.jpeg

image276.jpeg

image277.png

image278.png

image19.png

image279.emf
On_A

Off_A

[a]

[~a]

Model_A

Off_B

On_B

[~b]

[b]

Model_B

[~conditon]

[conditon]

image280.emf
On_A

Off_A

[~a]

[a]

Model_B

Off_A

On_A

[a]

[~a]

Model_A

[conditon]

[~conditon]

image281.jpeg

image282.emf
Model_AAtomic

Model_BAtomic

[conditon]

[~condition]

image283.png

image284.png

image285.emf
Off_B

On_B

[b==B1]

[b==B2]

Model_B

Off_A

On_A

[a==A1]

[a==A2]

Model_A

[conditon == C2]

[conditon == C1]

image286.emf
On_B

Off_B

[Model_B==B1]

[Model_B==B2]

Model_B

Off_A

On_A

[a==A1]

[a==A2]

Model_A

[conditon == C1]

[conditon == C2]

image287.emf
State2

en:

 param1=10;

 param2=2;

en,du:

 param1=param1+param2;

State1

en:

 param1=0;

 param2=1;

 param3=0;

du:

 param1=param1+param2;

[(In1+param1)>...

 param3]

[(In1+param1)>...

 param3]

image288.emf
State1

ex:

 param3=50;

en,du:

 param1=param1+param2;

en:

 param1=0;

 param2=1;

 param3=10;

State2

ex:

 param3=10;

en,du:

 param1=param1+param2;

en:

 param1=10;

 param2=2;

[(In1+param1)>...

 param3]

{

 param3=0;

}

[(In1+param1)>...

 param3]

image20.png

image289.emf
State1

en:

 param1=0;

 param2=1;

 param3=0;

en,du:

 param1=param1+param2;

State2

en:

 param1=10;

 param2=2;

en,du:

 param1=param1+param2;

[(In1+param1)>...

 param3]

[(In1+param1)>...

 param3]

image290.emf
State2

en:

 param1=10;

 param2=2;

ex:

 param3=10;

en,du:

 param1=param1+param2;

State1

en:

 param1=0;

 param2=1;

en:

 param3=10;

ex:

 param3=50;

en,du:

 param1=param1+param2;

[(In1+param1)>...

 param3]

{

 param3=0;

}

[(In1+param1)>...

 param3]

image291.wmf

image292.wmf

image293.wmf

image294.png

image295.png

image296.jpeg

image297.jpeg

image298.png

image21.png

image299.png

image300.png

image301.png

image302.png

image303.png

image304.png

image305.png

image306.png

image307.png

image22.png

image308.jpeg

image309.jpeg

image310.jpeg

image311.png

image312.jpeg

image313.png

image314.png

image23.png

image315.png

image316.png

image317.png

image318.jpeg

image319.jpeg

image320.jpeg

image321.jpeg

image322.png

image323.png

image324.png

image24.png

image325.png

image326.png

image327.png

image328.jpeg

image329.jpeg

image330.jpeg

image331.png

image332.png

image333.emf
a1

a2

a3

[Condition2]

{

 out = 1;

}

2

 [(C1 == ON) && (C2 == ON)]

1

[Condition3]

2

{

 out = 2;

}

1

image334.emf
a2

a3a1

{

 out = 3;

}

{

 out = 2;

}

2

[Condition2]

{

 out = 1;

}

2

 [(C2 == ON)]

1

 [(C1 == ON)]

1

[Condition3]

2

1

image25.png

image335.emf
a2

a3a1

{

 out = 2;

}

1

[Condition3]

2

 [(C1 == ON) && (C2 == ON)]

image336.emf
a2

a3a1

 [(C1 == ON) && (C2 == ON)]

{

 out = 2;

}

1

[Condition3]

2

image337.emf
a2

du:

 out=4;

a1

en:

out=0;

a3

en:

out=1;

{

 out = 2;

}

2

{

 out = 3;

}

1

 [(C1 == ON)]

 [(C2 == ON)]

1

[Condition3]

2

image338.emf
a1

en:

out=0;

a2

du:

 out=4;

a3

en:

out=1;

[Condition3]

2

 [(C1 == ON)]

1

 [(C2 == ON)]

1

{

 out = 2;

}

2

{

 out = 3;

}

image339.emf
a3

en:

 out=4;

a1

en:

 out=0;

a2

du:

 out=5;

{

 out = 2;

}

 [(C1 == ON)]

1

[Condition3]

2

 [(C2 == ON)]

[Condition2]

{

 out = 1;

}

2

1

image340.emf
a2

du:

 out=5;

a3

en:

 out = 4;

a1

en:

 out=0;

 [(C2 == ON)] [(C1 == ON)]

1

{

 out = 2;

}

[Condition3]

2

image341.jpeg

image342.emf
a2

du:

 out=5;

a1

en:

 out=0;

{

 out = 2;

}

 [(C2 == ON)] [(C1 == ON)]

1

[Condition3]

2

image343.emf
a2

du:

 out=5;

a1

en:

 out=0;

 [(C1 == ON) && (C2 == ON)]

1

{

 out = 2;

}

[Condition3 && (C2 == ON)]

2

image344.png

image26.png

image345.png

image346.emf
a1

a

{

 Action2;

}

[Condition1]

 {

 Action1;

 }

P1

a

a1

/ Action2;

[Condition1]

{

 Action1;

}

P2

OKNG

image347.emf
a1

a

{

 Action2;

}

[Condition1]

 {

 Action1;

 }

P1

a

a1

/ Action2;

[Condition1]

{

 Action1;

}

P2

OKNG

image348.png

image349.png

image350.wmf

image351.wmf

image352.wmf

image353.wmf

image354.png

image27.png

image355.png

image356.png

image357.wmf

image358.jpeg

image359.jpeg

image360.png

image361.wmf

image362.wmf

image28.png

image363.wmf

image364.wmf

image365.wmf

image366.png

image367.png

image368.wmf

image369.wmf

image370.wmf

image371.wmf

image29.png

image372.png

image373.png

image374.png

image375.png

image376.png

image377.jpeg

image378.png

image379.jpeg

image380.wmf

image381.wmf

image30.png

image382.jpeg

image383.jpeg

image384.jpeg

image385.jpeg

image386.jpeg

image387.wmf

”äŠr‚·‚é•Ï�”‚ÌŒ^‚È‚Ç‚ª–¾Šm‚É‚È‚é�B

比較する変数の型が明確になる。

image388.wmf

image389.png

image390.png

image391.png

image31.png

image392.png

image393.png

image394.png

image395.png

image396.png

image397.png

image398.png

image399.png

image400.png

image401.png

image32.png

image402.png

image403.png

image404.png

image405.png

image406.png

image407.png

image408.png

image33.png

image409.png

image410.png

image411.png

image412.png

image413.emf
[State == 1]

1

{

 nowger = 2;

}

2

[State == 2]

1

{

 nowger = 1;

}

/* State の振り分け処理 */

{

 nowger = 3;

}

2

[State == 3]

1

2

{

 nowger = 3;

}

A_bunkli_else_iffunction

image414.emf
{

 nowger = 1;

}

{

 nowger = 2;

}

[State == 2]

1

{

 nowger = 3;

}

/* State の振り分け処理 */

{

 nowger = 3;

}

2

[State == 3]

1

2

[State == 1]

A_bunkli_else_iffunction

image415.emf
 [(C1 == ON) && (C2 == ON)]

1

{

 out = 0;

}

2

{

 out = 1;

}

image416.emf
{

 out = 1;

}

{

 out = 0;

}

2

 [C1 == ON]

1

[C2 == ON]

image417.emf
{

 nowger = 1;

}

{

 nowger = 2;

}

2

[State == 3]

1

[State == 1]

1

{

 nowger = 3;

}

[State == 2]

1

/* State の振り分け処理 */

{

 nowger = 3;

}

2

/* 何もしない */

2

A_bunkli_else_iffunction

image34.png

image418.wmf

image419.wmf

image420.jpeg

image421.png

image422.png

image423.png

image424.png

image425.png

image426.png

image427.png

image35.png

image428.png

image429.png

image430.png

image431.png

image432.png

image433.emf
f

x

double

1-D Lookup Table

double

y

y=loookup1D(x)Simulink Function

{

 a= in * Param;

 out= loookup1D(a);

}

image434.emf
f

x

double

1-D Lookup Table

double

y

y=loookup1D(x)Simulink Function

s1

en:

 % ---------------

du:

 % ---------------

 % ---------------

{

 a= in * Param;

 out= loookup1D(a);

}

s2

[in2]

[out>10]

image435.png

image436.png

image437.png

image36.png

image438.png

image439.png

image440.png

image441.png

image442.png

image443.emf
2

Constant

uint8

Blue

Display

Convert

Data Type Conversion

BasicColors

Red

Yellow

Blue

*

BasicColors

double

1

In1

double

2

In2

double

3

In3

double

1

Out1

Red

Display1

BasicColors.Red

Enumerated

Constant

BasicColors

image444.emf
Red

Constant1

uint8

0

1

2

*

BasicColors

double

1

In1

double

2

In2

double

3

In3

double

1

Out1

1

Display1

image445.png

image446.png

image37.png

image447.png

image448.png

image449.png

image450.emf
1

Out1

Terminator

 ~= 0

Switch

Scope

Saturation

<=

Relational

Operator

Product

AND

Logical

Operator

Ground

1

Gain

K Ts

z-1

Discrete-Time

Integrator

1

Constant

1

In1

Z

-1

Delay

Saturation1

z

1

Unit Delay

image451.emf
In1Out1

Enabled Subsystem

function()

In1Out1

Function-Call Subsystem

Action

In1Out1

If Action Subsystem

In1Out1

Triggered Subsystem

image452.jpeg

image453.jpeg

image454.emf
 ~= 0

Switch

1

In1

A

A

B

B

1

Out1

image455.wmf
1

In1

1

Out1

u1

if(u1 ~= 0)

else

If

A

A

B

B

Merge

Merge

image456.emf
1

Constant

uint8

Yellow

Display

Convert

Data Type Conversion

BasicColors

BasicColors.Red

Constant1

BasicColors

Red

Display1

image457.emf
2

Constant

uint8

Blue

Display

Convert

Data Type Conversion

BasicColors

BasicColors.Green

Constant1

BasicColors

Red

Yellow

Blue

*

BasicColors

double

1

In1

double

2

In2

double

3

In3

double

1

Out1

Blue

Display1

image458.png

image459.png

image460.png

image461.emf
a

b

{

 nowger = 2;

}

2

[State == 2]

1

[State == 1]

1

{

 nowger = 3;

}

2

{

 nowger = 1;

}

[State == 3]

1

{

 nowger = 4;

}

1

/* 何もしない */

2

[nowger == 3]

2

image462.emf
a

b

外部遷移で記述すると、ステートからステートへの遷移線よりも

実行順序が早いので、内部遷移よりも１周期早いタイミングで遷移する

[State==5]

/* 終端まで行かないようにしてバックドラフトを起こし、*/

/*ステートへの遷移を実行させる*/

[nowger==3]

2

{

 nowger = 2;

}

{

 nowger = 4;

}

1

{

 nowger = 1;

}

/* 何もしない */

2

2

[State == 1]

1

{

 nowger = 3;

}

2

[State == 2]

1

[State == 3]

1

image463.emf
{

 nowger = 1;

}

[State == 1]

1

{

 nowger = 4;

}

{

 nowger = 2;

}

[State == 2]

1

{

 nowger = 3;

}

2

2

[State == 3]

1

{

 nowger = 4;

}

/* 何もしない */

2

a

b

内部遷移で実行させると、外部遷移評価後に実行されるので、

１周期遅れて遷移する

[nowger==3]

image464.jpeg

image38.png

image465.jpeg

image466.emf
Stateflow

Discrete-Time Linear Systems

Signal Attribute Manipulation

Signal Storage & Access

Discrete-Time Linear Systems

Sample & Hold Delays

Zero-Order

Hold

z

1

Unit Delay

z-0.75

z

Transfer Fcn

Real Zero

z-0.75

z-0.95

Transfer Fcn

Lead or Lag

0.05z

z-0.95

Transfer Fcn

First Order

 4

Delays

Tapped Delay

MemoryFirst-Order

Hold

K Ts

z-1

Discrete-Time

Integrator

y(n)=Cx(n)+Du(n)

x(n+1)=Ax(n)+Bu(n)

Discrete State-Space

PID(z)

Ref

Discrete PID Controller (2DOF)

PID(z)

Discrete PID Controller

1

1+0.5z

-1

Discrete Filter

0.5+0.5z

-1

1

Discrete FIR Filter

K (z-1)

Ts z

Discrete Derivative

(z-1)

z(z-0.5)

Discrete

Zero-Pole

1

z+0.5

Discrete

Transfer Fcn

Z

-2

Delay

z-1

z

Difference

d

u

Z

-d

Variable Integer Delay

x0

u

Z

-1

Resettable Delay

A

Data Store

Write

A

Data Store

Read

A

Data Store

Memory

Rate Transition

[1]

IC

InOut

Chart

x0

u

Z

-2

Delay1

u

x0

DTF

Discrete

Transfer Fcn1

image467.emf
z

1

Unit Delay

double

1

In1

double

Add

double

1

Out1

y_k_1_Signal

image468.jpeg

image469.jpeg

image470.emf
z

1

Unit Delay

double

1

In1

double

Add

double

1

Out1

y_k_1_Signal

image471.jpeg

image472.jpeg

image473.jpeg

image474.emf
x0

u

Z

-2

Delay

x0

u

Z

-1

Resettable Delay

image475.jpeg

image476.jpeg

image477.jpeg

image478.jpeg

image479.jpeg

image480.emf
In1Out1

Atomic Subsystem

In1Out1

Virtual Subsystem

image481.emf
10

1

2

3

4

10

1

2

3

4

z

1

Unit Delay

z

1

Unit Delay1

in1

in2

in3

in4

temp1

temp2

out1

out2

temp1

in5

in4

in2

out2

in1

out1

temp2

in6

in3

image482.emf
101234101

2

3

4

z

1

Unit Delay

z

1

Unit Delay1

in1in2in3in4temp1temp2out1out2temp1

in5

in4

in2

out2

in1

out1

temp2

in6

in3

image483.jpeg

image484.jpeg

image39.png

image485.jpeg

image486.jpeg

image487.jpeg

image488.gif

image489.gif

image490.gif

image491.jpeg

image492.jpeg

image493.gif

image40.png

image41.png

image42.png

image43.wmf

image44.png

image45.jpeg

image46.jpeg

image47.jpeg

image48.jpeg

image49.jpeg

image50.wmf

image51.wmf

image52.jpeg

image53.png

image54.emf
1

Out1

1

In1

z

1

Unit Delay

1

Constant

 >= 0

Switch

0

Constant1

2

Gain1

image55.emf
1

Out1

1

In1

z

1

Unit Delay

1

Constant

 >= 0

Switch

0

Constant1

2

Gain

image56.emf
1

In1

1

Out1

1

Constant

Add

Product

1

Constant1

|u|

Abs

image57.wmf

image58.wmf

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.wmf

image67.jpeg

image68.jpeg

image69.png

image70.png

image71.png

image72.png

image73.png

image74.emf
s

t

V

speed

1

s

2

t

1

V

s

t

<V>

image75.emf
Divide

1

s

2

t

1

V

<s>

<t>

V

image76.emf
s

t

V

speed

1

s

2

t

1

V

image77.emf
In1

pain1

pagin2

Triggered_Subsystem

f

In1

Out1

Out2

Triggered_Subsystem1

2

In2

3

In3

1

Out1

2

Out2

3

Out3

4

Out4

5

Out5

t1<t1>

<pgain><out1>

<out2>

<pagin2>

image78.emf
1

pain1

Trigger

1

In1

1

Gain

Terminator

inherit

Signal Specification

2

pagin2

[pgain]

From

[pgain]

Goto

1

Gain1

In1

<t1>

pgain<pgain>

<pgain>pagin2

image79.jpeg

image80.jpeg

image81.jpeg

