Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

# poly1d

Class representing single-variable polynomial nonlinear estimator for Hammerstein-Wiener models

## Syntax

```t=poly1d('Degree',n) t=poly1d('Coefficients',C) t=poly1d(n) ```

## Description

`poly1d` is an object that stores the single-variable polynomial nonlinear estimator for Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:

`t=poly1d('Degree',n)` creates a polynomial nonlinearity estimator object of `n`th degree.

`t=poly1d('Coefficients',C)` creates a polynomial nonlinearity estimator object with coefficients `C`.

`t=poly1d(n)` a polynomial nonlinearity estimator object of `n`th degree.

Use `evaluate(p,x)` to compute the value of the function defined by the `poly1d` object `p` at `x`.

## poly1d Properties

After creating the object, you can use `get` or dot notation to access the object property values. For example:

```% List all property values get(p) % Get value of Coefficients property p.Coefficients```
Property NameDescription
`Degree`

Positive integer specifies the degree of the polynomial
Default=`1`.

For example:

`poly1d('Degree',3)`
`Coefficients`

1-by-`(n+1)` matrix containing the polynomial coefficients.

## Examples

Use `poly1s` to specify the single-variable polynomial nonlinearity estimator in Hammerstein-Wiener models. For example:

`m=nlhw(Data,Orders,poly1d('deg',3),[]);`

where `'deg'` is an abbreviation for the property `'Degree'`.

## Tips

Use `poly1d` to define a nonlinear function $y=F\left(x\right)$, where F is a single-variable polynomial function of x:

`$F\left(x\right)=c\left(1\right){x}^{n}+c\left(2\right){x}^{\left(n-1\right)}+\dots +c\left(n\right)x+c\left(n+1\right)$`

Get trial now