This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Wave Equation on Square Domain

This example shows how to solve the wave equation using the solvepde function.

Problem Definition

The standard second-order wave equation is

To express this in toolbox form, note that the solvepde function solves problems of the form

So the standard wave equation has coefficients , , , and .

c = 1;
a = 0;
f = 0;
m = 1;


Solve the problem on a square domain. The squareg function describes this geometry. Create a model object and include the geometry. Plot the geometry and view the edge labels.

numberOfPDE = 1;
model = createpde(numberOfPDE);
ylim([-1.1 1.1]);
axis equal
title 'Geometry With Edge Labels Displayed';
xlabel x
ylabel y

Specify PDE Coefficients


Boundary Conditions

Set zero Dirichlet boundary conditions on the left (edge 4) and right (edge 2) and zero Neumann boundary conditions on the top (edge 1) and bottom (edge 3).

applyBoundaryCondition(model,'neumann','Edge',([1 3]),'g',0);

Generate Mesh

Create and view a finite element mesh for the problem.

ylim([-1.1 1.1]);
axis equal
xlabel x
ylabel y

Create Initial Conditions

The initial conditions:

  • .

  • .

This choice avoids putting energy into the higher vibration modes and permits a reasonable time step size.

u0 = @(location) atan(cos(pi/2*location.x));
ut0 = @(location) 3*sin(pi*location.x).*exp(sin(pi/2*location.y));

Define Solution Times

Find the solution at 31 equally-spaced points in time from 0 to 5.

n = 31;
tlist = linspace(0,5,n);

Calculate the Solution

Set the SolverOptions.ReportStatistics of model to 'on'.

model.SolverOptions.ReportStatistics ='on';
result = solvepde(model,tlist);
u = result.NodalSolution;
456 successful steps
37 failed attempts
988 function evaluations
1 partial derivatives
112 LU decompositions
987 solutions of linear systems

Animate the Solution

Plot the solution for all times. Keep a fixed vertical scale by first calculating the maximum and minimum values of u over all times, and scale all plots to use those -axis limits.

umax = max(max(u));
umin = min(min(u));
for i = 1:n
    axis([-1 1 -1 1 umin umax]);
    caxis([umin umax]);
    xlabel x
    ylabel y
    zlabel u
    M(i) = getframe;

To play the animation, use the movie(M) command.