This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Modeling a High-Speed Backplane (Rational Function to a Verilog-A Module)

This example shows how to use RF Toolbox™ functions to generate a Verilog-A module that models the high-level behavior of a high-speed backplane. First, it reads the single-ended 4-port S-parameters for a differential high-speed backplane and converts them to 2-port differential S-parameters. Then, it computes the transfer function of the differential circuit and fits a rational function to the transfer function. Next, the example exports a Verilog-A module that describes the model. Finally, it plots the unit step response of the generated Verilog-A module in a third-party circuit simulation tool.

Use a Rational Function Object to Describe the High-Level Behavior of a High-Speed Backplane

Read a Touchstone® data file, default.s4p, into an sparameters object. The parameters in this data file are the 50-ohm S-parameters of a single-ended 4-port passive circuit, measured at 1496 frequencies ranging from 50 MHz to 15 GHz. Then, extract the single-ended 4-port S-parameters from the data stored in the Parameters property of the sparameters object, use the s2sdd function to convert them to differential 2-port S-parameters, and use the s2tf function to compute the transfer function of the differential circuit. Then, use the rationalfit function to generate an rfmodel.rational object that describes the high-level behavior of this high-speed backplane. The rfmodel.rational object is a rational function object that expresses the circuit's transfer function in closed form using poles, residues, and other parameters, as described in the rationalfit reference page.

filename = 'default.s4p';
backplane = sparameters(filename);
data = backplane.Parameters;
freq = backplane.Frequencies;
z0 = backplane.Impedance;

Convert to 2-port differential S-parameters.

diffdata = s2sdd(data);
diffz0 = 2*z0;
difftf = s2tf(diffdata,diffz0,diffz0,diffz0);

Fit the differential transfer function into a rational function.

fittol = -30;           % Rational fitting tolerance in dB
delayfactor = 0.9;                % Delay factor
rationalfunc = rationalfit(freq,difftf,fittol,'DelayFactor',delayfactor)
rationalfunc = 

   rfmodel.rational with properties:

        A: [20x1 double]
        C: [20x1 double]
        D: 0
    Delay: 6.0172e-09
     Name: 'Rational Function'

Export the Rational Function Object as a Verilog-A Module

Use the writeva method of the rfmodel.rational object to export the rational function object as a Verilog-A module, called samplepassive1, that describes the rational model. The input and output nets of samplepassive1 are called line_in and line_out. The predefined Verilog-A discipline, electrical, describes the attributes of these nets. The format of numeric values, such as the Laplace transform numerator and denominator coefficients, is %12.10e. The electrical discipline is defined in the file disciplines.vams, which is included in the beginning of the file.

workingdir = tempname;
writeva(rationalfunc, fullfile(workingdir,'samplepassive1'), ...
    'line_in', 'line_out', 'electrical', '%12.10e', 'disciplines.vams');
// Module: samplepassive1

// Generated by MATLAB(R) 9.6 and the RF Toolbox 3.6.

// Generated on: 12-Apr-2019 22:54:13

`include "disciplines.vams"

module samplepassive1(line_in, line_out);
 electrical line_in, line_out;
 electrical node1;

 real nn1[0:1], nn2[0:1], nn3[0:1], nn4[0:1], nn5[0:1], nn6[0:1], nn7[0:1], nn8[0:1], nn9[0:1], nn10[0:0], nn11[0:0];
 real dd1[0:2], dd2[0:2], dd3[0:2], dd4[0:2], dd5[0:2], dd6[0:2], dd7[0:2], dd8[0:2], dd9[0:2], dd10[0:1], dd11[0:1];

 analog begin

   @(initial_step) begin
     nn1[0] = -3.8392614832e+18;
     nn1[1] = 5.2046393014e+07;
     dd1[0] = 2.8312609831e+21;
     dd1[1] = 3.5124823781e+09;
     dd1[2] = 1.0000000000e+00;
     nn2[0] = -2.0838483814e+19;
     nn2[1] = 5.3487174018e+08;
     dd2[0] = 1.8020362314e+21;
     dd2[1] = 7.8266367089e+09;
     dd2[2] = 1.0000000000e+00;
     nn3[0] = 1.7726270794e+19;
     nn3[1] = 2.5185716022e+09;
     dd3[0] = 1.2157471895e+21;
     dd3[1] = 8.1132784895e+09;
     dd3[2] = 1.0000000000e+00;
     nn4[0] = 2.3112282793e+20;
     nn4[1] = 9.2690544437e+08;
     dd4[0] = 7.9582429152e+20;
     dd4[1] = 1.1379108659e+10;
     dd4[2] = 1.0000000000e+00;
     nn5[0] = 8.9321469721e+19;
     nn5[1] = -1.4945928109e+10;
     dd5[0] = 4.1473706594e+20;
     dd5[1] = 1.1346735824e+10;
     dd5[2] = 1.0000000000e+00;
     nn6[0] = -3.5180951909e+20;
     nn6[1] = -1.9895507212e+10;
     dd6[0] = 1.9080843811e+20;
     dd6[1] = 1.0434555792e+10;
     dd6[2] = 1.0000000000e+00;
     nn7[0] = -1.0593240107e+20;
     nn7[1] = 1.9248932577e+10;
     dd7[0] = 6.1152960549e+19;
     dd7[1] = 1.0001203231e+10;
     dd7[2] = 1.0000000000e+00;
     nn8[0] = 5.4441539403e+16;
     nn8[1] = -9.7818749687e+06;
     dd8[0] = 4.3821946493e+19;
     dd8[1] = 6.6700188623e+08;
     dd8[2] = 1.0000000000e+00;
     nn9[0] = 2.2556903052e+16;
     nn9[1] = 7.9711163023e+06;
     dd9[0] = 2.1228807651e+19;
     dd9[1] = 4.9531801417e+08;
     dd9[2] = 1.0000000000e+00;
     nn10[0] = 1.1592988960e+10;
     dd10[0] = 3.0829914556e+09;
     dd10[1] = 1.0000000000e+00;
     nn11[0] = 1.2852839051e+08;
     dd11[0] = 5.9779845807e+08;
     dd11[1] = 1.0000000000e+00;

   V(node1) <+ laplace_nd(V(line_in), nn1, dd1);
   V(node1) <+ laplace_nd(V(line_in), nn2, dd2);
   V(node1) <+ laplace_nd(V(line_in), nn3, dd3);
   V(node1) <+ laplace_nd(V(line_in), nn4, dd4);
   V(node1) <+ laplace_nd(V(line_in), nn5, dd5);
   V(node1) <+ laplace_nd(V(line_in), nn6, dd6);
   V(node1) <+ laplace_nd(V(line_in), nn7, dd7);
   V(node1) <+ laplace_nd(V(line_in), nn8, dd8);
   V(node1) <+ laplace_nd(V(line_in), nn9, dd9);
   V(node1) <+ laplace_nd(V(line_in), nn10, dd10);
   V(node1) <+ laplace_nd(V(line_in), nn11, dd11);
   V(line_out) <+ absdelay(V(node1), 6.0171901584e-09);

Plot the Unit Step Response of the Generated Verilog-A Module

Many third-party circuit simulation tools support the Verilog-A standard. These tools simulate standalone components defined by Verilog-A modules and circuits that contain these components. The following figure shows the unit step response of the samplepassive1 module. The figure was generated with a third-party circuit simulation tool.

Figure 1: The unit step response.