Query regarding for loop

1 view (last 30 days)
Amy Topaz
Amy Topaz on 14 Mar 2022
Edited: Rena Berman on 8 Apr 2022
I have the below logic
T1 = linspace(10, 800, 10);
for range1 = 1:numel(T1)
a = 2*Mc*(((mde*kb*T1(range1))/(2*pi*(hbar^2)))^(3/2));
b = 2*(((mdh*kb*T1(range1))/(2*pi*(hbar^2)))^(3/2));
c = (kb*T1(range1))/e;
d = 1.17 - (8.096e-8*((T1(range1))^2))/(T1(range1) + 800);
ec1 = d;
ed1 = ec1 + Edi;
eq = @(EF1) ((a)*exp(-(ec1-EF1)/c)) + ((NA1)/(1+4*exp(-(EF1-ea1)/c))) - (((b)*exp(-(EF1-ev1)/c)) + ((ND1)/(1+2*exp(-(ed1-EF1)/c))));
x = [0 2];
Eflevel1(range1) = fzero(eq, x);
end
%How can I write the above lines without using for loop? Is that possible?
%Assume all other values as constants.
  2 Comments
Rena Berman
Rena Berman on 8 Apr 2022

(Answers Dev) Restored edit

Sign in to comment.

Answers (1)

Walter Roberson
Walter Roberson on 14 Mar 2022
Q = @(v) sym(v);
syms Edi EF1 e ea1 ev1 hbar kb Mc mde mdh NA1 ND1 T1
assume([Edi, EF1, e, ea1, ev1, hbar, kb, Mc, mde, mdh, NA1, ND1, T1] ~= 0)
Pi = Q(pi);
range1 = 1;
T1vals = linspace(10, 800, 10);
a = 2*Mc*(((mde*kb*T1(range1))/(2*Pi*(hbar^2)))^(3/2));
b = 2*(((mdh*kb*T1(range1))/(2*Pi*(hbar^2)))^(3/2));
c = (kb*T1(range1))/e;
d = Q(1.17) - (Q(8.096e-8)*((T1(range1))^2))/(T1(range1) + Q(800));
ec1 = d;
ed1 = ec1 + Edi;
eq = ((a)*exp(-(ec1-EF1)/c)) + ((NA1)/(1+4*exp(-(EF1-ea1)/c))) - (((b)*exp(-(EF1-ev1)/c)) + ((ND1)/(1+2*exp(-(ed1-EF1)/c))));
sol = solve(eq, EF1, 'returnconditions', true)
sol = struct with fields:
EF1: (T1*kb*(log(z1) + pi*k*2i))/e parameters: [k z1] conditions: ~in((e*((T1*kb*(log(z1) + pi*k*2i))/e - (T1*kb*log(-4*exp((e*ea1)/(T1*kb))))/e)*1i)/(2*T1*kb*pi), 'integer') & in(k, 'integer') & log(z1) + pi*k*2i ~= 0 & ~in((e*((T1*kb*(log(z1) + pi*k*2i))/e - (T1*kb*log(-(exp(-(764645580906253*T1*e)…
sc = subs(sol.conditions, sol.parameters(1), 0)
sc = 
sz = solve(sc, sol.parameters(2))
Warning: Solutions are only valid under certain conditions. To include parameters and conditions in the solution, specify the 'ReturnConditions' value as 'true'.
sz = 
sol_EF1 = subs(sol.EF1, {sol.parameters(1), sol.parameters(2)}, {0, sz})
sol_EF1 = 
  1 Comment
Walter Roberson
Walter Roberson on 14 Mar 2022
The solutions involve roots of an equation of degree 4. I believe it is a polynomial, so I believe that explicit solutions are possible -- though they would be very long !

Sign in to comment.

Categories

Find more on Programming in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!