# "Error using indexing Not enough inputs to inline function; Error in NRM (line 93) INJAC=JAC(x1,x2)" showing in a multivariable Newton Raphson program.

4 views (last 30 days)
Eddye Carlos on 22 Nov 2022
Answered: Torsten on 22 Nov 2022
I'm using a code that I learned from school to try to solve a three variable non-linear system, but after inputing my three functions the program shows me the Jacobian and then the error messages show. The exact same code did worked to my professor, so I don't know what may gone wrong. Here are the equations:
3*x1-cos(x2*x3)-0.5
x1^2 - 81*(x2+.1)^2 + sin(x3) + 1.06
exp(-x1*x2) + 20*(x3) + (10*3.141592 -3)/3
and is the code:
clear, clc
while true
clear
disp(' Metodo de Newton Raphson Multivariable')
fprintf('\n ')
disp(' Elija una de las opciones siguientes:')
disp(' (1) Para un sistema de 2 ecuaciones')
disp(' (2) Para un sistema de 3 ecuaciones')
disp(' (3) Para un sistema de 4 ecuaciones')
disp(' (0) Salir')
fprintf('\n ')
valor = input('Ingrese opcion: ');
switch valor
case 1
clc
syms x1 x2
A1 = input('Ingrese ecuacion 1 ');
A2 = input('Ingrese ecuacion 2 ');
tol= input('ingrese toleracia ');
J=jacobian([A1,A2,],[x1 x2]);
fprintf('\n\t Matriz Jacobiana \n\n')
pretty(J)
JAC = inline(J);
B = inline([-A1,-A2]');
x1=1;
x2=1;
INJAC=JAC(x1,x2);
INB=B(x1,x2);
SOLUCION=INJAC\INB;
h1=INJAC(:,1);
h2=INJAC(:,2);
igual=['=' '=']';
fprintf('\n\t Evaluaci?n de la matriz Jacobiana y de la funci?n negativa \n')
fprintf('\t Cuando las incognitas valen 1 \n')
fprintf('\t [J][h]=[-F] \n\n')
format long
T=table(h1,h2,igual,INB,SOLUCION);
disp(T)
format
n=0;
err1=100;
err2=100;
fprintf('\n\t I\t\t X1\t\t\t X2\t\t\t EX1\t\t EX2\t\t\n')
fprintf('\t %d\t %+.6f\t %+.6f\t NO APLICA NO APLICA\n', n, x1, x2)
while true
if (err1<=tol) && (err2<=tol)
break
else
n=n+1;
INJAC=JAC(x1,x2);
INB=B(x1,x2);
SOL=INJAC\INB;
h1=SOL(1,1);
h2=SOL(2,1);
X1=x1+h1;
X2=x2+h2;
err1=abs(x1-X1);
err2=abs(x2-X2);
fprintf('\t %d\t %+.6f\t %+.6f\t %.4f\t %.4f\n', n, X1, X2, err1, err2)
x1=X1;
x2=X2;
disp(INJAC)
disp(SOL)
end
end
case 2
clc
syms x1 x2 x3
A1 = input('Ingrese ecuacion 1 ');
A2 = input('Ingrese ecuacion 2 ');
A3 = input('Ingrese ecuacion 3 ');
tol= input('ingrese toleracia ');
J=jacobian([A1,A2,A3],[x1 x2 x3]);
fprintf('\n\t Matriz Jacobiana \n\n')
pretty(J)
JAC = inline(J);
B = inline([-A1,-A2,-A3]');
x1=0.5;
x2=530;
x3=530;
INJAC=JAC(x1,x2);
INB=B(x1,x2,x3);
SOLUCION=INJAC\INB;
h1=INJAC(:,1);
h2=INJAC(:,2);
h3=INJAC(:,3);
igual=['=' '=' '=']';
fprintf('\n\t Evaluaci?n de la matriz Jacobiana y de la funci?n negativa \n')
fprintf('\t Cuando las incognitas valen 1 \n')
fprintf('\t [J][h]=[-F] \n\n')
format long
T=table(h1,h2,h3,igual,INB,SOLUCION);
disp(T)
format
n=0;
err1=100;
err2=100;
err3=100;
%fprintf('\n\t I\t\t X1\t\t\t X2\t\t\t X3\t\t EX1\t\t EX2\t\t EX3\n')
%fprintf('\t %d\t %+.6f\t %+.6f\t %+.6f\t NO APLICA NO APLICA NO APLICA\n', n, x1, x2, x3)
while true
if (err1<=tol) && (err2<=tol) && (err3<=tol)
break
else
n=n+1;
INJAC=JAC(x1,x2);
INB=B(x1,x2,x3);
SOL=INJAC\INB;
h1=SOL(1,1);
h2=SOL(2,1);
h3=SOL(3,1);
X1=x1+h1;
X2=x2+h2;
X3=x3+h3;
err1=abs(x1-X1);
err2=abs(x2-X2);
err3=abs(x3-X3);
%fprintf('\t %d\t %+.6f\t %+.6f\t %+.6f\t %.4f\t %.4f\t %.4f\n', n, X1, X2, X3, err1, err2,err3)
x1=X1;
x2=X2;
x3=X3;
disp("Jacobiano")
disp(INJAC)
disp("Solucion")
disp(X1)
disp(X2)
disp(X3)
end
end
case 3
clc
syms x1 x2 x3 x4
A1 = input('Ingrese ecuacion 1 ');
A2 = input('Ingrese ecuacion 2 ');
A3 = input('Ingrese ecuacion 3 ');
A4 = input('Ingrese ecuacion 4 ');
tol= input('ingrese toleracia ');
J=jacobian([A1,A2,A3,A4],[x1 x2 x3 x4]);
fprintf('\n\t Matriz Jacobiana \n\n')
pretty(J)
JAC = inline(J);
B = inline([-A1,-A2,-A3,-A4]');
x1=1;
x2=1;
x3=1;
x4=1;
INJAC=JAC(x1,x2,x3,x4);
INB=B(x1,x2,x3,x4);
SOLUCION=INJAC\INB;
h1=INJAC(:,1);
h2=INJAC(:,2);
h3=INJAC(:,3);
h4=INJAC(:,4);
igual=['=' '=' '=' '=']';
fprintf('\n\t Evaluaci?n de la matriz Jacobiana y de la funci?n negativa \n')
fprintf('\t Cuando las incognitas valen 1 \n')
fprintf('\t [J][h]=[-F] \n\n')
format long
T=table(h1,h2,h3,h4,igual,INB,SOLUCION);
disp(T)
format
n=0;
err1=100;
err2=100;
err3=100;
err4=100;
fprintf('\n\t I\t\t X1\t\t\t X2\t\t\t X3\t\t\t X4\t\t EX1\t\t EX2\t\t EX3\t\t EX4\n')
fprintf('\t %d\t %+.6f\t %+.6f\t %+.6f\t %+.6f\t NO APLICA NO APLICA NO APLICA NO APLICA\n', n, x1, x2, x3,x4)
while true
if (err1<=tol) && (err2<=tol) && (err3<=tol) && (err4<=tol)
break
else
n=n+1;
INJAC=JAC(x1,x2,x3,x4);
INB=B(x1,x2,x3,x4);
SOL=INJAC\INB;
h1=SOL(1,1);
h2=SOL(2,1);
h3=SOL(3,1);
h4=SOL(4,1);
X1=x1+h1;
X2=x2+h2;
X3=x3+h3;
X4=x4+h4;
err1=abs(x1-X1);
err2=abs(x2-X2);
err3=abs(x3-X3);
err4=abs(x4-X4);
fprintf('\t %d\t %+.6f\t %+.6f\t %+.6f\t %+.6f\t %.4f\t %.4f\t %.4f\t %.4f\n', n, X1, X2, X3, X4, err1, err2,err3, err4)
x1=X1;
x2=X2;
x3=X3;
x4=X4;
end
end
case 0
break
otherwise
fprintf('\n\t Opcion invalida, intente de nuevo\n')
end
end
Metodo de Newton Raphson Multivariable
Elija una de las opciones siguientes:
(1) Para un sistema de 2 ecuaciones
(2) Para un sistema de 3 ecuaciones
(3) Para un sistema de 4 ecuaciones
(0) Salir
Unable to run the 'fevalJSON' function because it calls the 'input' function, which is not supported for this product offering.

Torsten on 22 Nov 2022
For the 3-variable case, the line
INJAC=JAC(x1,x2);
has to be changed to
INJAC=JAC(x1,x2,x3);