Fit data to lagged custom function
3 views (last 30 days)
Show older comments
Hello,
I would like to ask if you can advice the correct approach I can follow to estimate the parameters of a custom lagged function
(1) y(t)=c^2*a+y(t-1)*(a-1)
where c is a known constant.
to a time series data (I can use the symbilic function to create (1) )
Thank you.
Best regards
Paolo
2 Comments
Accepted Answer
Harsh Kumar
on 2 Aug 2024
Edited: Walter Roberson
on 4 Aug 2024
Hope this may help ,
% Assuming you have your y data in a vector called 'y'
% and c is your known constant
% Step 1: Prepare data
y_lag = [NaN; y(1:end-1)]; % Create lagged y, with NaN for the first value
y = y(2:end); % Remove the first value of y to match dimensions
y_lag = y_lag(2:end);
% Step 2 & 3: Define the objective function
obj_fun = @(a) sum((y - (c^2*a + y_lag*(a-1))).^2);
% Step 4: Use optimization to find the best 'a'
options = optimset('Display', 'iter');
a_est = fminsearch(obj_fun, 0.5, options); % 0.5 is an initial guess for 'a'
% Print the result
fprintf('Estimated value of a: %f\n', a_est);
% Optional: Plot the results
y_pred = c^2*a_est + y_lag*(a_est-1);
plot(y, 'b-', 'DisplayName', 'Observed');
hold on;
plot(y_pred, 'r--', 'DisplayName', 'Predicted');
legend('show');
title('Observed vs Predicted y(t)');
More Answers (0)
See Also
Categories
Find more on Interpolation in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!