Clear Filters
Clear Filters

Fit data to lagged custom function

3 views (last 30 days)
Hello,
I would like to ask if you can advice the correct approach I can follow to estimate the parameters of a custom lagged function
(1) y(t)=c^2*a+y(t-1)*(a-1)
where c is a known constant.
to a time series data (I can use the symbilic function to create (1) )
Thank you.
Best regards
Paolo
  2 Comments
Torsten
Torsten on 1 Aug 2024
Edited: Torsten on 1 Aug 2024
I would like to ask if you can advice the correct approach I can follow to estimate the parameters of a custom lagged function
You mean the parameter "a" ?
Paolo
Paolo on 2 Aug 2024
Hi Torsten,
thank you for your feedback. Yes I mean "a"; I forgot to mention that the time series of Y is already available and I know Y(0)= 0.04356
Best regards
Paolo

Sign in to comment.

Accepted Answer

Harsh Kumar
Harsh Kumar on 2 Aug 2024
Edited: Walter Roberson on 4 Aug 2024
Hope this may help ,
% Assuming you have your y data in a vector called 'y'
% and c is your known constant
% Step 1: Prepare data
y_lag = [NaN; y(1:end-1)]; % Create lagged y, with NaN for the first value
y = y(2:end); % Remove the first value of y to match dimensions
y_lag = y_lag(2:end);
% Step 2 & 3: Define the objective function
obj_fun = @(a) sum((y - (c^2*a + y_lag*(a-1))).^2);
% Step 4: Use optimization to find the best 'a'
options = optimset('Display', 'iter');
a_est = fminsearch(obj_fun, 0.5, options); % 0.5 is an initial guess for 'a'
% Print the result
fprintf('Estimated value of a: %f\n', a_est);
% Optional: Plot the results
y_pred = c^2*a_est + y_lag*(a_est-1);
plot(y, 'b-', 'DisplayName', 'Observed');
hold on;
plot(y_pred, 'r--', 'DisplayName', 'Predicted');
legend('show');
title('Observed vs Predicted y(t)');

More Answers (0)

Categories

Find more on Interpolation in Help Center and File Exchange

Products


Release

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!