getting singular jacobian error while using bvp4c solver
37 views (last 30 days)
Show older comments
when i am using a range for phi_c for 0.01 to 0.1 , i am getting a plot. but when im increasing range from 0.01 to 0.8, i am getting error. please help me solve this.
% Define global variable for initial scalar field values
phi_c_values = logspace(log10(0.01), log10(0.1), 100);
% Physical constants
M_pl_squared = 1.0;
m = 1.0; % Scalar mass
% Function to define the differential equations
function dydr = bsode(r, y, p)
G = 1; % Gravitational constant
omega = p(1);
m=1;
a = y(1);
alpha = y(2);
psi0 = y(3);
phi = y(4);
dydr = zeros(4, 1);
dydr(1) = (0.5) * ((a/r) * ((1 - a^2) + 4 * pi * G * r * a * ...
(psi0^2 * a^2 * (m^2 + omega^2 / alpha^2) + phi^2)));
dydr(2) = (alpha/2) * (((a^2 - 1)/r) + 4 * pi * r * ...
(psi0^2 * a^2 * (omega^2 / alpha^2 - m^2) + phi^2));
dydr(3) = phi;
dydr(4) = -(1 + a^2 - 4 * pi * r^2 * psi0^2 * a^2 * m^2) * (phi/r) - ...
(omega^2 / alpha^2 - m^2) * psi0 * a^2;
end
% Function to define boundary conditions
function res = bsbc(ya, yb, p)
global phi_c;
res = [ya(1) - 1; % a(0) = 1
ya(2) - 1; % alpha(0) = 1
ya(3) - phi_c; % psi0(0) = phi_c
yb(3); % psi0(infinity) = 0
ya(4)]; % phi(0) = 0
end
% Function for calculating ADM mass
function M = ADM_mass(r, a)
M = (1 - a.^-2) .* (r / 2);
end
% Main loop over phi_c values
omega = 0.864;
infinity = 15;
x_init = linspace(1e-5, infinity, 1000);
% Lists to store maximum masses and radii
max_masses = [];
max_radii = [];
phi_values = [];
mass_values = [];
for phi_c = phi_c_values
% Initial guess structure
solinit = bvpinit(x_init, [1, 1, phi_c, 0], omega);
% Solve the BVP
sol = bvp4c(@bsode, @bsbc, solinit);
f = sol.y;
i = find(f(3, :) < 1e-5, 1);
r = sol.x(1:i);
a = f(1, 1:i);
% Scale alpha and omega
alpha_last = 1 / f(2, i);
scaled_alpha = alpha_last * f(2, 1:i);
scaled_omega = alpha_last * sol.parameters(1);
% Calculate ADM mass
M = ADM_mass(r, a);
M_max = 0.633 * M_pl_squared / m;
M_scaled = M / M_max;
% Find maximum mass and corresponding radius
max_mass = max(M_scaled);
target_mass = 0.99 * max_mass;
index = find(abs(M_scaled - target_mass) == min(abs(M_scaled - target_mass)), 1);
max_radius = r(index);
max_M = M_scaled(index);
% Store results
max_masses(end+1) = max_M;
max_radii(end+1) = max_radius;
phi_values(end+1) = phi_c;
mass_values(end+1) = max_mass;
fprintf('phi_c = %.5f, max_mass = %.5f, max_radius = %.5f\n', phi_c, max_M, max_radius);
end
% Plotting mass-radius curve
figure;
plot(max_radii, max_masses);
title('Scaled ADM Mass (M) vs Radial Coordinate (r)');
xlabel('r (Radius)');
ylabel('M (Scaled Mass)');
grid on;
% Plotting m vs phi
figure;
plot(phi_values, mass_values, 'orange');
title('Scaled ADM Mass (M) vs \phi_c');
xlabel('\phi_c');
ylabel('M (Scaled Mass)');
grid on;
0 Comments
Answers (1)
Torsten
on 12 Nov 2024 at 14:23
I can't interprete your solution curves, but it seems to be a problem for the solver that the Scaled Mass goes to 0 with increasing phi_c.
% Define global variable for initial scalar field values
phi_c_values = linspace(0.01,0.15,200);
% Physical constants
M_pl_squared = 1.0;
m = 1.0; % Scalar mass
% Main loop over phi_c values
omega = 0.864;
infinity = 15;
x_init = linspace(1e-5, infinity, 1000);
% Lists to store maximum masses and radii
max_masses = [];
max_radii = [];
phi_values = [];
mass_values = [];
solinit = bvpinit(x_init, [1, 1, phi_c_values(1), 0], omega);
options = bvpset('RelTol',1e-8,'AbsTol',1e-8);
for phi_c = phi_c_values
% Solve the BVP
sol = bvp4c(@bsode, @(x,y,p)bsbc(x,y,p,phi_c), solinit, options);
f = sol.y;
i = find(f(3, :) < 1e-5, 1);
r = sol.x(1:i);
a = f(1, 1:i);
% Scale alpha and omega
alpha_last = 1 / f(2, i);
scaled_alpha = alpha_last * f(2, 1:i);
scaled_omega = alpha_last * sol.parameters(1);
% Calculate ADM mass
M = ADM_mass(r, a);
M_max = 0.633 * M_pl_squared / m;
M_scaled = M / M_max;
% Find maximum mass and corresponding radius
max_mass = max(M_scaled);
target_mass = 0.99 * max_mass;
index = find(abs(M_scaled - target_mass) == min(abs(M_scaled - target_mass)), 1);
max_radius = r(index);
max_M = M_scaled(index);
% Store results
max_masses(end+1) = max_M;
max_radii(end+1) = max_radius;
phi_values(end+1) = phi_c;
mass_values(end+1) = max_mass;
fprintf('phi_c = %.5f, max_mass = %.5f, max_radius = %.5f\n', phi_c, max_M, max_radius);
solinit = bvpinit(sol.x,@(x)interp1(sol.x,sol.y.',x),sol.parameters(1));
end
% Plotting mass-radius curve
figure;
plot(max_radii, max_masses);
title('Scaled ADM Mass (M) vs Radial Coordinate (r)');
xlabel('r (Radius)');
ylabel('M (Scaled Mass)');
grid on;
% Plotting m vs phi
figure;
plot(phi_values, mass_values, 'color','red');
title('Scaled ADM Mass (M) vs \phi_c');
xlabel('\phi_c');
ylabel('M (Scaled Mass)');
grid on;
% Function to define the differential equations
function dydr = bsode(r, y, p)
G = 1; % Gravitational constant
omega = p(1);
m=1;
a = y(1);
alpha = y(2);
psi0 = y(3);
phi = y(4);
dydr = zeros(4, 1);
dydr(1) = (0.5) * ((a/r) * ((1 - a^2) + 4 * pi * G * r * a * ...
(psi0^2 * a^2 * (m^2 + omega^2 / alpha^2) + phi^2)));
dydr(2) = (alpha/2) * (((a^2 - 1)/r) + 4 * pi * r * ...
(psi0^2 * a^2 * (omega^2 / alpha^2 - m^2) + phi^2));
dydr(3) = phi;
dydr(4) = -(1 + a^2 - 4 * pi * r^2 * psi0^2 * a^2 * m^2) * (phi/r) - ...
(omega^2 / alpha^2 - m^2) * psi0 * a^2;
end
% Function to define boundary conditions
function res = bsbc(ya, yb, p, phi_c)
res = [ya(1) - 1; % a(0) = 1
ya(2) - 1; % alpha(0) = 1
ya(3) - phi_c; % psi0(0) = phi_c
yb(3); % psi0(infinity) = 0
ya(4)]; % phi(0) = 0
end
% Function for calculating ADM mass
function M = ADM_mass(r, a)
M = (1 - a.^-2) .* (r / 2);
end
10 Comments
Torsten
on 14 Nov 2024 at 12:30
If you get a different solution, you use different equations and/or parameters in my opinion.
See Also
Categories
Find more on Fluid Dynamics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!