Squeezenet model not training in MatlabR2017b.
3 views (last 30 days)
Show older comments
Hello,
I have generated a Squeezenet basic model(vanilla) using Matlab R2017b. I am having exactly same implementation as it is in the Squeezenet implementation using Caffe.
Below is my Matlab code: I am using image datastore object with 10 classes "indsRand10.mat" which is subset of ImageNet dataset.
%%Squeezenet network
%%--Bhushan Muthiyan
imdbPath = fullfile(pwd, 'indsRand10.mat') ;
if exist(imdbPath, 'file')
imdb = load(imdbPath) ;
trainingNumFiles = 768;
valNumFiles = 64;
rng(1) % For reproducibility
[imdb.trainDigitData, imdb.testDigitData] = splitEachLabel(imdb.imdsTrain, ...
trainingNumFiles,'randomize');
[imdb.testDigitData, a] = splitEachLabel(imdb.testDigitData, ...
valNumFiles,'randomize');
end
numImages = numel(imdb.trainDigitData.Files);
idx = randperm(numImages,20);
for i = 1:20
subplot(4,5,i)
I = readimage(imdb.trainDigitData, idx(i));
imshow(I)
end
numClasses = numel(categories(imdb.trainDigitData.Labels));
layers = [
imageInputLayer([224 224 3],'Name','input')
convolution2dLayer(7,96,'Padding','same','Stride',2,'Name','conv_1')
reluLayer('Name','relu_1')
maxPooling2dLayer(3,'Stride',2,'Name','pool_1')
%%fire 2
convolution2dLayer(1,16,'Padding','same','Stride',1,'Name','conv_2')
reluLayer('Name','relu_11')
convolution2dLayer(1,64,'Padding','same','Stride',1,'Name','conv_3')
reluLayer('Name','relu_2')
depthConcatenationLayer(2,'Name','concat_1')
%%fire 3
convolution2dLayer(1,16,'Padding','same','Stride',1,'Name','conv_6')
reluLayer('Name','relu_12')
convolution2dLayer(1,64,'Padding','same','Stride',1,'Name','conv_7')
reluLayer('Name','relu_3')
depthConcatenationLayer(2,'Name','concat_3')
maxPooling2dLayer(3,'Stride',2,'Name','pool_2')
%%fire 4
convolution2dLayer(1,32,'Padding','same','Stride',1,'Name','conv_9')
reluLayer('Name','relu_13')
convolution2dLayer(1,128,'Padding','same','Stride',1,'Name','conv_10')
reluLayer('Name','relu_4')
depthConcatenationLayer(2,'Name','concat_5')
%%fire 5
convolution2dLayer(1,32,'Padding','same','Stride',1,'Name','conv_12')
reluLayer('Name','relu_14')
convolution2dLayer(1,128,'Padding','same','Stride',1,'Name','conv_13')
reluLayer('Name','relu_5')
depthConcatenationLayer(2,'Name','concat_6')
maxPooling2dLayer(3,'Stride',2,'Name','pool_3')
%fire 6
convolution2dLayer(1,48,'Padding','same','Stride',1,'Name','conv_15')
reluLayer('Name','relu_15')
convolution2dLayer(1,192,'Padding','same','Stride',1,'Name','conv_16')
reluLayer('Name','relu_6')
depthConcatenationLayer(2,'Name','concat_8')
%%fire 7
convolution2dLayer(1,48,'Padding','same','Stride',1,'Name','conv_18')
reluLayer('Name','relu_16')
convolution2dLayer(1,192,'Padding','same','Stride',1,'Name','conv_19')
reluLayer('Name','relu_7')
depthConcatenationLayer(2,'Name','concat_9')
%fire 8
convolution2dLayer(1,64,'Padding','same','Stride',1,'Name','conv_21')
reluLayer('Name','relu_17')
convolution2dLayer(1,256,'Padding','same','Stride',1,'Name','conv_22')
reluLayer('Name','relu_8')
depthConcatenationLayer(2,'Name','concat_11')
% fire 9
convolution2dLayer(1,64,'Padding','same','Stride',1,'Name','conv_24')
reluLayer('Name','relu_18')
convolution2dLayer(1,256,'Padding','same','Stride',1,'Name','conv_25')
depthConcatenationLayer(2,'Name','concat_12')
%reluLayer('Name','relu_9')
dropoutLayer(0.5,'Name','Drop_1')
convolution2dLayer(1,numClasses,'Padding','same','Stride',1,'Name','conv_27')
reluLayer('Name','relu_9')
averagePooling2dLayer(13,'Stride',1,'Name','avg_pool_4')
%reluLayer('Name','relu_10')
softmaxLayer('Name','softmax')
classificationLayer('Name','classOutput')];
lgraph = layerGraph(layers);
figure
plot(lgraph)
conv_4 = convolution2dLayer(3,64,'Padding',1,'Stride',1,'Name','conv_4');
lgraph = addLayers(lgraph,conv_4);
conv_8 = convolution2dLayer(3,64,'Padding',1,'Stride',1,'Name','conv_8');
lgraph = addLayers(lgraph,conv_8);
conv_11 = convolution2dLayer(3,128,'Padding',1,'Stride',1,'Name','conv_11');
lgraph = addLayers(lgraph,conv_11);
conv_14 = convolution2dLayer(3,128,'Padding',1,'Stride',1,'Name','conv_14');
lgraph = addLayers(lgraph,conv_14);
conv_17 = convolution2dLayer(3,192,'Padding',1,'Stride',1,'Name','conv_17');
lgraph = addLayers(lgraph,conv_17);
conv_20 = convolution2dLayer(3,192,'Padding',1,'Stride',1,'Name','conv_20');
lgraph = addLayers(lgraph,conv_20);
conv_23 = convolution2dLayer(3,256,'Padding',1,'Stride',1,'Name','conv_23');
lgraph = addLayers(lgraph,conv_23);
conv_26 = convolution2dLayer(3,256,'Padding',1,'Stride',1,'Name','conv_26');
lgraph = addLayers(lgraph,conv_26);
relu_19 = reluLayer('Name','relu_19');
lgraph = addLayers(lgraph,relu_19);
relu_20 = reluLayer('Name','relu_20');
lgraph = addLayers(lgraph,relu_20);
relu_21 = reluLayer('Name','relu_21');
lgraph = addLayers(lgraph,relu_21);
relu_22 = reluLayer('Name','relu_22');
lgraph = addLayers(lgraph,relu_22);
relu_23 = reluLayer('Name','relu_23');
lgraph = addLayers(lgraph,relu_23);
relu_24 = reluLayer('Name','relu_24');
lgraph = addLayers(lgraph,relu_24);
relu_25 = reluLayer('Name','relu_25');
lgraph = addLayers(lgraph,relu_25);
relu_26 = reluLayer('Name','relu_26');
lgraph = addLayers(lgraph,relu_26);
lgraph = connectLayers(lgraph,'relu_11','conv_4');
lgraph = connectLayers(lgraph,'conv_4','relu_19');
lgraph = connectLayers(lgraph,'relu_19','concat_1/in2');
lgraph = connectLayers(lgraph,'relu_12','conv_8');
lgraph = connectLayers(lgraph,'conv_8','relu_20');
lgraph = connectLayers(lgraph,'relu_20','concat_3/in2');
lgraph = connectLayers(lgraph,'relu_13','conv_11');
lgraph = connectLayers(lgraph,'conv_11','relu_21');
lgraph = connectLayers(lgraph,'relu_21','concat_5/in2');
lgraph = connectLayers(lgraph,'relu_14','conv_14');
lgraph = connectLayers(lgraph,'conv_14','relu_22');
lgraph = connectLayers(lgraph,'relu_22','concat_6/in2');
lgraph = connectLayers(lgraph,'relu_15','conv_17');
lgraph = connectLayers(lgraph,'conv_17','relu_23');
lgraph = connectLayers(lgraph,'relu_23','concat_8/in2');
lgraph = connectLayers(lgraph,'relu_16','conv_20');
lgraph = connectLayers(lgraph,'conv_20','relu_24');
lgraph = connectLayers(lgraph,'relu_24','concat_9/in2');
lgraph = connectLayers(lgraph,'relu_17','conv_23');
lgraph = connectLayers(lgraph,'conv_23','relu_25');
lgraph = connectLayers(lgraph,'relu_25','concat_11/in2');
lgraph = connectLayers(lgraph,'relu_18','conv_26');
lgraph = connectLayers(lgraph,'conv_26','relu_26');
lgraph = connectLayers(lgraph,'relu_26','concat_12/in2');
figure
plot(lgraph);
optionsTransfer = trainingOptions('sgdm', ...
'MaxEpochs',25, ...
'MiniBatchSize',64,...
'InitialLearnRate',0.04,...
'LearnRateDropFactor',0.2,...
'LearnRateDropPeriod',5,...
'Plots','training-progress',...
'ExecutionEnvironment','auto');
netTransfer = trainNetwork(imdb.trainDigitData,lgraph,optionsTransfer);
YPred = classify(netTransfer,imdb.testDigitData);
YTest = imdb.testDigitData.Labels;
accuracy = sum(YPred==YTest)/numel(YTest);
fprintf('accuracy = %f\n',accuracy);
numImages = numel(imdb.testDigitData.Files);
idx = randperm(numImages,20);
for i = 1:20
subplot(4,5,i)
I = readimage(imdb.testDigitData, idx(i));
imshow(I)
end
Can someone let me know the reason behind this.
Enclosed here is the image of Squeezenet vanilla model structure.
0 Comments
Answers (1)
Mickaël Tits
on 14 Nov 2017
Hi,
If I understand, you are trying to train your Squeezenet model from scratch, with 768 images ? You need a pretrained model if you want a chance that it works.
You can get here a pretrained SqueezeNet, and use it for transfer learning as you want : https://github.com/titsitits/Squeezenet-Matlab-Keras
Mickaël Tits
1 Comment
See Also
Categories
Find more on Image Data Workflows in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!