Info
This question is closed. Reopen it to edit or answer.
solve runge kutta method
1 view (last 30 days)
Show older comments
lamda=0.2;
mu=0.8;
h=0.1; % step size
x = 0:h:5; % Calculates upto y(3)
Y = zeros(1,length(x));
y(1) = 0.2; % redo with other choices here.
% initial condition
%F_xy = @(??,??) (lamda^2/(lamda+mu)^2)*exp(-2(lamda+mu)*t)+((2*mu*lamda)/(lamda+mu)^2)*exp(-(mu+lamda)*t)+mu^2/(lamda+mu)^2;
for i=1:(length(x)-1) % calculation loop
k_1 = F_xy(x(i),y(i));
k_2 = F_xy(x(i)+0.5*h,y(i)+0.5*h*k_1);
k_3 = F_xy((x(i)+0.5*h),(y(i)+0.5*h*k_2));
k_4 = F_xy((x(i)+h),(y(i)+k_3*h));
y(i+1) = y(i) + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h; % main equation
end
% validate using a decent ODE integrator
tspan = [0,5]; y0 = -0.5;
[tx, yx] = ode45(F_xy, tspan, y0)
plot(x,y,'o-', tx, yx, '--')
if i have this equation F_xy=(lamda^2/(lamda+mu)^2)*exp(-2(lamda+mu)*t)+((2*mu*lamda)/(lamda+mu)^2)*exp(-(mu+lamda)*t)+mu^2/(lamda+mu)^2
the variable only t
how can correct the code to get the answer?
1 Comment
James Tursa
on 15 May 2019
Edited: James Tursa
on 15 May 2019
Can you show the code you are using for the F_xy function? Can you post the original DE you are trying to solve?
Answers (0)
This question is closed.
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!