
How do I find curve of best fit or create one manually to fit?
4 views (last 30 days)
Show older comments
angle = [45,50,55,60,65,70,75,80,85]';
P = [55.51, 69.5, 78.07, 82.06, 81.81, 77.3, 68.12, 53.42, 31.59]';
scatter(angle, P, 'bx');
%Also I apparently don't have the cftool so I can't use that I'm afraid.
0 Comments
Accepted Answer
Ameer Hamza
on 28 Apr 2020
Edited: Ameer Hamza
on 28 Apr 2020
It looks like a parabols. If you have optimization toolbox, you can use lsqcurvefit to fit this equation (y=a*x^2+b*x+c) to the dataset.
angle = [45,50,55,60,65,70,75,80,85]';
P = [55.51, 69.5, 78.07, 82.06, 81.81, 77.3, 68.12, 53.42, 31.59]';
fun = @(a,b,c,angles) a*angles.^2 + b.*angles + c;
param_sol = lsqcurvefit(@(param, angles) fun(param(1),param(2),param(3),angles), rand(1,3), angle, P);
a_sol = param_sol(1);
b_sol = param_sol(2);
c_sol = param_sol(3);
plot(angle, P, 'bx', angle, fun(a_sol, b_sol, c_sol, angle), 'r-');

You can also do it without any toolbox. Following also fit a parabolic equation of form (y=a*x^2+b*x+c)
angle = [45,50,55,60,65,70,75,80,85]';
P = [55.51, 69.5, 78.07, 82.06, 81.81, 77.3, 68.12, 53.42, 31.59]';
X = [angle(:).^2 angle(:) ones(size(angle(:)))];
params = X\P(:);
P_estimated = X*params;
plot(angle, P, 'bx', angle, P_estimated, 'r-')
0 Comments
More Answers (0)
See Also
Categories
Find more on Get Started with Curve Fitting Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!