Image_DataSet = imageDatastore('four_channel_CT', 'LabelSource','foldernames', 'FileExtensions', {'.tiff'});
DatasetPath=fullfile('E:\DEV\Covid\four_channel_CT');
imds=imageDatastore(DatasetPath, 'IncludeSubfolders', true,...
'LabelSource','foldernames','fileextension',{'.tiff'});
labelDir = fullfile(DatasetPath,'testImages');
classNames = [ "Background","Lung","space","Covid",];
pixelLabelIds = 1:30;
inputTileSize = [512,512,4];
lgraph = createUnet();
initialLearningRate = 0.05;
maxEpochs = 150;
minibatchSize = 16;
l2reg = 0.0001;
options = trainingOptions('sgdm',...
'InitialLearnRate',initialLearningRate, ...
'Momentum',0.9,...
'L2Regularization',l2reg,...
'MaxEpochs',maxEpochs,...
'MiniBatchSize',minibatchSize,...
'LearnRateSchedule','piecewise',...
'Shuffle','every-epoch',...
'GradientThresholdMethod','l2norm',...
'GradientThreshold',0.05, ...
'Plots','training-progress', ...
'VerboseFrequency',20);
modelDateTime = datestr(now,'dd-mmm-yyyy-HH-MM-SS');
net = trainNetwork(imds,lgraph,options);
save(['CovidUnet-' modelDateTime '-Epoch-' num2str(maxEpochs) '.mat'],'net','options');
*********************************************************************
*********************************************************************
function lgraph = createUnet()
encoderDepth = 4;
initialEncoderNumChannels = 64;
inputTileSize = [512 512 4];
convFilterSize = [3 3];
inputNumChannels = 4;
numClasses = 4;
inputlayer = imageInputLayer(inputTileSize,'Name','ImageInputLayer');
[encoder, finalNumChannels] = iCreateEncoder(encoderDepth, convFilterSize, initialEncoderNumChannels, inputNumChannels);
firstConv = createAndInitializeConvLayer(convFilterSize, finalNumChannels, ...
2*finalNumChannels, 'Bridge-Conv-1');
firstReLU = reluLayer('Name','Bridge-ReLU-1');
secondConv = createAndInitializeConvLayer(convFilterSize, 2*finalNumChannels, ...
2*finalNumChannels, 'Bridge-Conv-2');
secondReLU = reluLayer('Name','Bridge-ReLU-2');
encoderDecoderBridge = [firstConv; firstReLU; secondConv; secondReLU];
dropOutLayer = dropoutLayer(0.5,'Name','Bridge-DropOut');
encoderDecoderBridge = [encoderDecoderBridge; dropOutLayer];
initialDecoderNumChannels = finalNumChannels;
upConvFilterSize = 2;
[decoder, finalDecoderNumChannels] = iCreateDecoder(encoderDepth, upConvFilterSize, convFilterSize, initialDecoderNumChannels);
layers = [inputlayer; encoder; encoderDecoderBridge; decoder];
finalConv = convolution2dLayer(1,numClasses,...
'BiasL2Factor',0,...
'Name','Final-ConvolutionLayer');
finalConv.Weights = randn(1,1,finalDecoderNumChannels,numClasses);
finalConv.Bias = zeros(1,1,numClasses);
smLayer = softmaxLayer('Name','Softmax-Layer');
pixelClassLayer = pixelClassificationLayer('Name','Segmentation-Layer');
layers = [layers; finalConv; smLayer; pixelClassLayer];
lgraph = layerGraph(layers);
for depth = 1:encoderDepth
startLayer = sprintf('Encoder-Stage-%d-ReLU-2',depth);
endLayer = sprintf('Decoder-Stage-%d-DepthConcatenation/in2',encoderDepth-depth + 1);
lgraph = connectLayers(lgraph,startLayer, endLayer);
end
end
function [encoder, finalNumChannels] = iCreateEncoder(encoderDepth, convFilterSize, initialEncoderNumChannels, inputNumChannels)
encoder = [];
for stage = 1:encoderDepth
encoderNumChannels = initialEncoderNumChannels * 2^(stage-1);
if stage == 1
firstConv = createAndInitializeConvLayer(convFilterSize, inputNumChannels, encoderNumChannels, ['Encoder-Stage-' num2str(stage) '-Conv-1']);
else
firstConv = createAndInitializeConvLayer(convFilterSize, encoderNumChannels/2, encoderNumChannels, ['Encoder-Stage-' num2str(stage) '-Conv-1']);
end
firstReLU = reluLayer('Name',['Encoder-Stage-' num2str(stage) '-ReLU-1']);
secondConv = createAndInitializeConvLayer(convFilterSize, encoderNumChannels, encoderNumChannels, ['Encoder-Stage-' num2str(stage) '-Conv-2']);
secondReLU = reluLayer('Name',['Encoder-Stage-' num2str(stage) '-ReLU-2']);
encoder = [encoder;firstConv; firstReLU; secondConv; secondReLU];
if stage == encoderDepth
dropOutLayer = dropoutLayer(0.5,'Name',['Encoder-Stage-' num2str(stage) '-DropOut']);
encoder = [encoder; dropOutLayer];
end
maxPoolLayer = maxPooling2dLayer(2, 'Stride', 2, 'Name',['Encoder-Stage-' num2str(stage) '-MaxPool']);
encoder = [encoder; maxPoolLayer];
end
finalNumChannels = encoderNumChannels;
end
function [decoder, finalDecoderNumChannels] = iCreateDecoder(encoderDepth, upConvFilterSize, convFilterSize, initialDecoderNumChannels)
decoder = [];
for stage = 1:encoderDepth
decoderNumChannels = initialDecoderNumChannels / 2^(stage-1);
upConv = createAndInitializeUpConvLayer(upConvFilterSize, 2*decoderNumChannels, decoderNumChannels, ['Decoder-Stage-' num2str(stage) '-UpConv']);
upReLU = reluLayer('Name',['Decoder-Stage-' num2str(stage) '-UpReLU']);
depthConcatLayer = depthConcatenationLayer(2, 'Name', ['Decoder-Stage-' num2str(stage) '-DepthConcatenation']);
firstConv = createAndInitializeConvLayer(convFilterSize, 2*decoderNumChannels, decoderNumChannels, ['Decoder-Stage-' num2str(stage) '-Conv-1']);
firstReLU = reluLayer('Name',['Decoder-Stage-' num2str(stage) '-ReLU-1']);
secondConv = createAndInitializeConvLayer(convFilterSize, decoderNumChannels, decoderNumChannels, ['Decoder-Stage-' num2str(stage) '-Conv-2']);
secondReLU = reluLayer('Name',['Decoder-Stage-' num2str(stage) '-ReLU-2']);
decoder = [decoder; upConv; upReLU; depthConcatLayer; firstConv; firstReLU; secondConv; secondReLU];
end
finalDecoderNumChannels = decoderNumChannels;
end
function convLayer = createAndInitializeConvLayer(convFilterSize, inputNumChannels, outputNumChannels, layerName)
convLayer = convolution2dLayer(convFilterSize,outputNumChannels,...
'Padding', 'same',...
'BiasL2Factor',0,...
'Name',layerName);
convLayer.Weights = sqrt(2/((convFilterSize(1)*convFilterSize(2))*inputNumChannels)) ...
* randn(convFilterSize(1),convFilterSize(2), inputNumChannels, outputNumChannels);
convLayer.Bias = zeros(1,1,outputNumChannels);
convLayer.BiasLearnRateFactor = 2;
end
function upConvLayer = createAndInitializeUpConvLayer(UpconvFilterSize, inputNumChannels, outputNumChannels, layerName)
upConvLayer = transposedConv2dLayer(UpconvFilterSize, outputNumChannels,...
'Stride',2,...
'BiasL2Factor',0,...
'Name',layerName);
upConvLayer.Weights = sqrt(2/((UpconvFilterSize^2)*inputNumChannels)) ...
* randn(UpconvFilterSize,UpconvFilterSize,outputNumChannels,inputNumChannels);
upConvLayer.Bias = zeros(1,1,outputNumChannels);
upConvLayer.BiasLearnRateFactor = 2;
end
0 Comments
Sign in to comment.