How to get spatial frequency from FFT?
100 views (last 30 days)
Show older comments
Hi,
I have got the first graph based on the following code. How can I get the second graph after performing FFT?
I1=0.7;
I2=0.5;
I3=0.3;
L1=200;
L2=170;
n1=1;
n2=1.444;
lam=(1.52:0.0001:1.56);
Q12=(4*pi*n1*L1)./lam;
Q23=(4*pi*n2*L2)./lam;
Q13=Q12+Q23;
I=I1+I2+I3+2*sqrt(I1*I2).*cos(Q12)+2*sqrt(I2*I3).*cos(Q23)+2*sqrt(I1*I3).*cos(Q13);
plot(lam*1000,I)
0 Comments
Accepted Answer
Star Strider
on 25 Nov 2020
The Fourier transform neither knows nor cares whether the units of the independent variable are time, space, or anything else. It will do whatever you ask it to do (within limits, of course)
Try this:
I1=0.7;
I2=0.5;
I3=0.3;
L1=200;
L2=170;
n1=1;
n2=1.444;
lam=(1.52:0.0001:1.56);
Q12=(4*pi*n1*L1)./lam;
Q23=(4*pi*n2*L2)./lam;
Q13=Q12+Q23;
I=I1+I2+I3+2*sqrt(I1*I2).*cos(Q12)+2*sqrt(I2*I3).*cos(Q23)+2*sqrt(I1*I3).*cos(Q13);
figure
plot(lam*1000,I)
L = numel(lam);
Ts = mean(diff(lam));
Fs = 1/Ts;
Fn = Fs/2;
FTI = fft(I)/L;
Fv = linspace(0, 1, fix(L/2)+1)*Fn * 1E-3;
Iv = 1:numel (Fv);
[pks,locs] = findpeaks(abs(FTI(Iv)));
figure
plot(Fv, abs(FTI(Iv)))
xlim([0 0.5])
xlabel('Spatial Frequency (nm^{-1})')
ylabel('Amplitude')
text(Fv(locs), abs(FTI(locs)), sprintfc('Peak %d',(1:numel(locs))), 'HorizontalAlignment','center', 'VerticalAlignment','bottom')
producing:
.
11 Comments
Chueng
on 3 Jul 2024
hello,can you explain how wavelength is converted to spatial frequency during the FFT processing? Do you have any relevant formulas?
Star Strider
on 3 Jul 2024
Edited: Star Strider
on 3 Jul 2024
The Fourier transform converts time, distance, or other variables to frequency units of cycles-per-original uint. So for time domain signals with the sampling frequency in seconds, the resulting frequency uints are cycles-per-second, or Hertz (Hz). Here, with the original units being nanometres, the resulting frequency uints are in cycles-per-nanometre, or more simply, or .
EDIT — (3 Jul 2024 at 14:25)
In terms of your other question (How to use fft to analyse the refelction specturm? that I just now saw), simply replace ‘cycles’ with ‘wavenumber’ since that is how you choose to express it, instead labelling it .
More Answers (0)
See Also
Categories
Find more on Frequency Transformations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!