Calculating euclidean distances in a matrix

2 views (last 30 days)
I have to a matrix n x 2 in which each row represent a point in a Cartesian space in X and Y. The distance I have to calculate is between a row and its follower so at the end I have an array (n-1) x 1. I ve coded a simply function but since n = 50 000 it takes a lot of time to compute. How to speed up the entire process?
That s my function:
function [Dist] = Distances(A)
n = length(A)
Dist = (n -1);
for i=1:n
if i == n
break
end
Dist(i,1)= sqrt((A(i+1,1)- A(i,1))^2 + (A(i+1,2)- A(i,2))^2)
i= i+1
end

Answers (2)

KSSV
KSSV on 16 Dec 2020
Edited: KSSV on 16 Dec 2020
% demo data
n = 100 ;
A = rand(n,2) ;
dA = diff(A) ;
d = sqrt(sum(dA.^2,2)) ;
  1 Comment
Image Analyst
Image Analyst on 16 Dec 2020
This is what I'd do too. It's fast:
tic
n = 50000; % fifty thousand
xy = rand(n,2);
dxy = diff(xy);
d = sqrt(sum(dxy.^2,2));
toc
On my computer it takes 0.003 seconds for 50,000 rows.

Sign in to comment.


Star Strider
Star Strider on 16 Dec 2020
Use the pdist function, then squareform.
Example —
x = randi(99, 5, 2); % Create Matrix
d = pdist(x);
m = squareform(d);
The information you want are in the upper and lower diagonals of ‘m’, so:
Result = diag(m,1);
equivalently:
Result = diag(m,-1);
This is likely faster than an explicit loop, however I did not time it with a large matrix.

Categories

Find more on Statistics and Machine Learning Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!