Test | Status | Code Input and Output |
---|---|---|
1 | Pass |
qe_correct1_1 = -1;
qe_correct1_2 = -2;
[qe_result1_1, qe_result1_2] = SolveQuadraticEquation(1, 3, 2);
assert( (abs(qe_result1_1 - qe_correct1_1) < 0.0001 && ...
abs(qe_result1_2 - qe_correct1_2) < 0.0001) || ...
(abs(qe_result1_1 - qe_correct1_2) < 0.0001 && ...
abs(qe_result1_2 - qe_correct1_1) < 0.0001) );
|
2 | Pass |
qe_correct2_1 = 0.224745;
qe_correct2_2 = -2.22474;
[qe_result2_1, qe_result2_2] = SolveQuadraticEquation(2, 4, -1);
assert( (abs(qe_result2_1 - qe_correct2_1) < 0.0001 && ...
abs(qe_result2_2 - qe_correct2_2) < 0.0001) || ...
(abs(qe_result2_1 - qe_correct2_2) < 0.0001 && ...
abs(qe_result2_2 - qe_correct2_1) < 0.0001) );
|
3 | Pass |
qe_correct3_1 = -1;
qe_correct3_2 = -1;
[qe_result3_1, qe_result3_2] = SolveQuadraticEquation(2, 4, 2);
assert( (abs(qe_result3_1 - qe_correct3_1) < 0.0001 && ...
abs(qe_result3_2 - qe_correct3_2) < 0.0001) || ...
(abs(qe_result3_1 - qe_correct3_2) < 0.0001 && ...
abs(qe_result3_2 - qe_correct3_1) < 0.0001) );
|
Find all elements less than 0 or greater than 10 and replace them with NaN
11632 Solvers
466 Solvers
169 Solvers
Back to basics 20 - singleton dimensions
225 Solvers
Side of an equilateral triangle
1524 Solvers