Cody

# Problem 258. linear least squares fitting

Solution 1683440

Submitted on 30 Nov 2018 by Martin C.
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

### Test Suite

Test Status Code Input and Output
1   Pass
x = [1,2,3,4]'; y = rand(4,1); f{1} = @(x) ones(size(x)); aref=mean(y); assert(norm(fit_coefficients(f,x,y)-aref)<1e-6)

a = 1 1 1 1 M = 1 1 1 1 a = 0.2597

2   Pass
x = [1,2,3,4,5]' + randn(5,1); y = [1,2,3,4,5]' + randn(5,1); f{1} = @(x) ones(size(x)); f{2} = @(x) x; aref(2) = sum((x-mean(x)).*(y-mean(y)))/sum((x-mean(x)).^2); aref(1) = mean(y)-aref(2)*mean(x); assert(norm(fit_coefficients(f,x,y)-aref')<1e-6)

a = 1 0 1 0 1 0 1 0 1 0 a = 1.0000 -0.0531 1.0000 5.0078 1.0000 4.0944 1.0000 4.6863 1.0000 4.9418 M = 1.0000 -0.0531 1.0000 5.0078 1.0000 4.0944 1.0000 4.6863 1.0000 4.9418 a = 1.7284 0.1805

3   Pass
x = [1:15]' + randn(15,1); y = -10+0.2*x-0.5*x.^2+0.4*x.^3+0.001*log(abs(x)) + 0.2*randn(15,1); f{1} = @(x) ones(size(x)); f{2} = @(x) x; f{3} = @(x) x.^2; f{4} = @(x) x.^3; aref = fliplr(polyfit(x,y,3)); assert(norm(fit_coefficients(f,x,y)-aref')<1e-6)

a = 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 a = 1.0000 -0.0751 0 0 1.0000 1.4609 0 0 1.0000 2.2656 0 0 1.0000 5.2210 0 0 1.0000 3.3636 0 0 1.0000 4.9409 0 0 1.0000 4.7048 0 0 1.0000 6.5898 0 0 1.0000 9.0594 0 0 1.0000 9.8503 0 0 1.0000 10.9882 0 0 1.0000 12.3727 0 0 1.0000 13.5321 0 0 1.0000 12.4314 0 0 1.0000 16.2072 0 0 a = 1.0000 -0.0751 0.0056 0 1.0000 1.4609 2.1341 0 1.0000 2.2656 5.1329 0 1.0000 5.2210 27.2590 0 1.0000 3.3636 11.3141 0 1.0000 4.9409 24.4121 0 1.0000 4.7048 22.1350 0 1.0000 6.5898 43.4257 0 1.0000 9.0594 82.0722 0 1.0000 9.8503 97.0275 0 1.0000 10.9882 120.7415 0 1.0000 12.3727 153.0834 0 1.0000 13.5321 183.1173 0 1.0000 12.4314 154.5405 0 1.0000 16.2072 262.6730 0 a = 1.0e+03 * 0.0010 -0.0001 0.0000 -0.0000 0.0010 0.0015 0.0021 0.0031 0.0010 0.0023 0.0051 0.0116 0.0010 0.0052 0.0273 0.1423 0.0010 0.0034 0.0113 0.0381 0.0010 0.0049 0.0244 0.1206 0.0010 0.0047 0.0221 0.1041 0.0010 0.0066 0.0434 0.2862 0.0010 0.0091 0.0821 0.7435 0.0010 0.0099 0.0970 0.9557 0.0010 0.0110 0.1207 1.3267 0.0010 0.0124 0.1531 1.8941 0.0010 0.0135 0.1831 2.4780 0.0010 0.0124 0.1545 1.9212 0.0010 0.0162 0.2627 4.2572 M = 1.0e+03 * 0.0010 -0.0001 0.0000 -0.0000 0.0010 0.0015 0.0021 0.0031 0.0010 0.0023 0.0051 0.0116 0.0010 0.0052 0.0273 0.1423 0.0010 0.0034 0.0113 0.0381 0.0010 0.0049 0.0244 0.1206 0.0010 0.0047 0.0221 0.1041 0.0010 0.0066 0.0434 0.2862 0.0010 0.0091 0.0821 0.7435 0.0010 0.0099 0.0970 0.9557 0.0010 0.0110 0.1207 1.3267 0.0010 0.0124 0.1531 1.8941 0.0010 0.0135 0.1831 2.4780 0.0010 0.0124 0.1545 1.9212 0.0010 0.0162 0.2627 4.2572 a = -9.8268 0.0969 -0.4854 0.3994

4   Pass
x = [0:0.1:2*pi]'; y = 0.123 + 0.456*sin(x).*exp(0.1*x); f{1} = @(x) ones(size(x)); f{2} = @(x) sin(x).*exp(0.1*x); aref=[0.123 0.456]'; assert(norm(fit_coefficients(f,x,y)-aref)<1e-6)

a = 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 a = 1.0000 0 1.0000 0.1008 1.0000 0.2027 1.0000 0.3045 1.0000 0.4053 1.0000 0.5040 1.0000 0.5996 1.0000 0.6909 1.0000 0.7771 1.0000 0.8571 1.0000 0.9300 1.0000 0.9948 1.0000 1.0509 1.0000 1.0973 1.0000 1.1335 1.0000 1.1589 1.0000 1.1730 1.0000 1.1754 1.0000 1.1659 1.0000 1.1443 1.0000 1.1106 1.0000 1.0649 1.0000 1.0074 1.0000 0.9385 1.0000 0.8587 1.0000 0.7685 1.0000 0.6686 1.0000 0.5599 1.0000 0.4432 1.0000 0.3197 1.0000 0.1905 1.0000 0.0567 1.0000 -0.0804 1.0000 -0.2194 1.0000 -0.3590 1.0000 -0.4978 1.0000 -0.6343 1.0000 -0.7671 1.0000 -0.8947 1.0000 -1.0158 1.0000 -1.1290 1.0000 -1.2330 1.0000 -1.3265 1.0000 -1.4084 1.0000 -1.4776 1.0000 -1.5331 1.0000 -1.5741 1.0000 -1.5999 1.0000 -1.6099 1.0000 -1.6037 1.0000 -1.5810 1.0000 -1.5418 1.0000 -1.4860 1.0000 -1.4140 1.0000 -1.3261 1.0000 -1.2229 1.0000 -1.1051 1.0000 -0.9738 1.0000 -0.8298 1.0000 -0.6745 1.0000 -0.5091 1.0000 -0.3353 1.0000 -0.1545 M = 1.0000 0 1.0000 0.1008 1.0000 0.2027 1.0000 0.3045 1.0000 0.4053 1.0000 0.5040 1.0000 0.5996 1.0000 0.6909 1.0000 0.7771 1.0000 0.8571 1.0000 0.9300 1.0000 0.9948 1.0000 1.0509 1.0000 1.0973 1.0000 1.1335 1.0000 1.1589 1.0000 1.1730 1.0000 1.1754 1.0000 1.1659 1.0000 1.1443 1.0000 1.1106 1.0000 1.0649 1.0000 1.0074 1.0000 0.9385 1.0000 0.8587 1.0000 0.7685 1.0000 0.6686 1.0000 0.5599 1.0000 0.4432 1.0000 0.3197 1.0000 0.1905 1.0000 0.0567 1.0000 -0.0804 1.0000 -0.2194 1.0000 -0.3590 1.0000 -0.4978 1.0000 -0.6343 1.0000 -0.7671 1.0000 -0.8947 1.0000 -1.0158 1.0000 -1.1290 1.0000 -1.2330 1.0000 -1.3265 1.0000 -1.4084 1.0000 -1.4776 1.0000 -1.5331 1.0000 -1.5741 1.0000 -1.5999 1.0000 -1.6099 1.0000 -1.6037 1.0000 -1.5810 1.0000 -1.5418 1.0000 -1.4860 1.0000 -1.4140 1.0000 -1.3261 1.0000 -1.2229 1.0000 -1.1051 1.0000 -0.9738 1.0000 -0.8298 1.0000 -0.6745 1.0000 -0.5091 1.0000 -0.3353 1.0000 -0.1545 a = 0.1230 0.4560

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!