Why does the test suite shows true results for numbers that are not prime, i.e. the sum of digits of the given number is not prime?
Test  Status  Code Input and Output 

1  Pass 
x = 5;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
a =
5
n =
5

2  Pass 
x = 1;
y_correct = false;
assert(isequal(isPernicious(x),y_correct))
a =
1
n =
1

3  Fail 
x = 2^randi(16);
y_correct = false;
assert(isequal(isPernicious(x),y_correct))
a =
3
a =
3 2
n =
5

4  Pass 
x = 17;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
a =
1
a =
1 7
n =
8

5  Pass 
x = 18;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
a =
1
a =
1 8
n =
9

6  Pass 
x = 61;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
a =
6
a =
6 1
n =
7

7  Pass 
x = 6;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
a =
6
n =
6

8  Pass 
x = 2115;
y_correct = false;
assert(isequal(isPernicious(x),y_correct))
a =
2
a =
2 1
a =
2 1 1
a =
2 1 1 5
n =
9

9  Pass 
x = 2114;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
a =
2
a =
2 1
a =
2 1 1
a =
2 1 1 4
n =
8

10  Pass 
x = 2017;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
a =
2
a =
2 1
a =
2 1 7
n =
10

Maximum running product for a string of numbers
833 Solvers
469 Solvers
Back to basics 11  Max Integer
613 Solvers
342 Solvers
Digit concentration in Champernowne's constant
102 Solvers