Cody

Problem 523. Sequential Unconstrained Minimization (SUMT) using Exterior Penalty

Solution 669914

Submitted on 14 May 2015 by Patrick
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

Test Suite

Test Status Code Input and Output
1   Pass
%% Haftka & Gurdal, Figure 5.7.1 example f = @(x) 0.5*x; g = @(x) 2-x; x0 = 0; [xmin,fmin]=sumt_exterior(f,g,[],x0) %#ok<*NOPTS> xcorrect=2; assert(norm(xmin-xcorrect)<1e-3) assert(abs(fmin-f(xcorrect))<1e-3)

xmin = 2.0001 fmin = 1.0000

2   Pass
%% f = @(x) 0.5*x; g = @(x) 2-x; x0 = 0; [xmin,fmin]=sumt_exterior(f,g,[],x0,1) % 1 iteration for unit penalty value xr1=1.75; assert(norm(xmin-xr1)<1e-4) assert(abs(fmin-f(xr1))<1e-4)

xmin = 1.7500 fmin = 0.8750

3   Pass
%% Haftka & Gurdal, Example 5.7.1 f = @(x) x(1).^2 + 10*x(2).^2; h = @(x) sum(x)-4; x0 = [0; 0]; [xmin,fmin]=sumt_exterior(f,[],h,x0) xcorrect=[40; 4]/11; assert(norm(xmin-xcorrect)<1e-3) assert(abs(fmin-f(xcorrect))<1e-4)

xmin = 3.6364 0.3636 fmin = 14.5454

4   Pass
%% f = @(x) x(1).^2 + 10*x(2).^2; h = @(x) sum(x)-4; x0 = [0; 0]; r = [1, 5]; [xmin,fmin]=sumt_exterior(f,[],h,x0,r) % 2 iterations xr2=[3.0769 0.3077]; assert(norm(xmin-xr2,inf)<1e-4) assert(abs(fmin-f(xr2))<1e-4)

xmin = 3.0769 0.3077 fmin = 10.4141

5   Pass
%% Vanderplaats, Figure 5-4 example f = @(x) sum(x); g = @(x) [x(1) - 2*x(2) - 2 8 - 6*x(1) + x(1).^2 - x(2)]; x0 = [0; 0]; [xmin,fmin]=sumt_exterior(f,g,[],x0) xcorrect=[2; 0]; assert(norm(xmin-xcorrect)<1e-4) assert(abs(fmin-f(xcorrect))<1e-4)

xmin = 2.0000 0.0000 fmin = 2.0000

6   Pass
%% f = @(x) sum(x); g = @(x) [x(1) - 2*x(2) - 2 8 - 6*x(1) + x(1).^2 - x(2)]; x0 = [5; 5]; r = [1, 2]; [xmin,fmin]=sumt_exterior(f,g,[],x0,r) % 2 iterations xr2=[1.9536 -0.0496]; assert(norm(xmin-xr2)<1e-4) assert(abs(fmin-f(xr2))<1e-4)

xmin = 1.9536 -0.0496 fmin = 1.9040