Cody

Problem 524. Sequential Unconstrained Minimization (SUMT) using Interior Penalty

Solution 669913

Submitted on 14 May 2015 by Patrick
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

Test Suite

Test Status Code Input and Output
1   Pass
%% Haftka & Gurdal, Figure 5.7.1 example f = @(x) 0.5*x; g = @(x) 2-x; x0 = 5; [xmin,fmin]=sumt_interior(f,g,x0) %#ok<*NOPTS> xcorrect=2; assert(norm(xmin-xcorrect)<2e-3) assert(abs(fmin-f(xcorrect))<1e-3)

xmin = 2.0001 fmin = 1.0001

2   Pass
%% f = @(x) 0.5*x; g = @(x) 2-x; x0 = 5; [xmin,fmin]=sumt_interior(f,g,x0,1) % 1 iteration for unit penalty value xr1=4; assert(norm(xmin-xr1)<1e-4) assert(abs(fmin-f(xr1))<1e-4)

xmin = 4 fmin = 2

3   Pass
%% Vanderplaats, Figure 5-4 example f = @(x) sum(x); g = @(x) [x(1) - 2*x(2) - 2 8 - 6*x(1) + x(1).^2 - x(2)]; x0 = [3; 3]; [xmin,fmin]=sumt_interior(f,g,x0,1) % 1 iteration xr2=[1.8686 2.1221]; assert(norm(xmin-xr2)<1e-2) assert(abs(fmin-f(xr2))<1e-2)

xmin = 1.8686 2.1221 fmin = 3.9906

4   Pass
%% f = @(x) sum(x); g = @(x) [x(1) - 2*x(2) - 2 8 - 6*x(1) + x(1).^2 - x(2)]; x0 = [2.1; 0.1]; r = 2^12; [xmin,fmin]=sumt_interior(f,g,x0,r) % Final iteration xcorrect=[2; 0]; assert(norm(xmin-xcorrect)<5e-3) assert(abs(fmin-f(xcorrect))<2e-3)

xmin = 1.9999 0.0006 fmin = 2.0005