Cody

# Problem 8049. Stress-Strain Properties - 2

Solution 2684666

Submitted on 12 Jul 2020 by Ramesh Kumar V
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

### Test Suite

Test Status Code Input and Output
1   Pass
% The following properties are measured at room temperature and are tensile % in a single direction. Some materials, such as metals are generally % isotropic, whereas others, like composite are highly anisotropic % (different properties in different directions). Also, property values can % range depending on the material grade. Finally, thermal or environmental % changes can alter these properties, sometimes drastically.

2   Pass
S_y = 250e6; %Pa S_u = 400e6; %Pa e_y = 0.00125; e_u = 0.35; nu = 0.26; G = 79.3e9; %Pa E = 200e9; %Pa density = 7.85; %g/cm^3 sh_exp = 0.14; %strain-hardening exponent sh_coeff = 0.463; %strain-hardening coefficient assert(abs(stress_strain2(S_y,e_y)-1.5625e5)/1.5625e5<5e-2)

3   Pass
S_y = 830e6; %Pa S_u = 900e6; %Pa e_y = 0.00728; e_u = 0.14; nu = 0.342; G = 44e9; %Pa E = 114e9; %Pa density = 4.51; %g/cm^3 sh_exp = 0.04; %strain-hardening exponent sh_coeff = 0.974; %strain-hardening coefficient assert(abs(stress_strain2(S_y,e_y)-3.0212e6)/3.0212e6<5e-2)

4   Pass
S_y = 1172e6; %Pa S_u = 1407e6; %Pa e_y = 0.00563; e_u = 0.027; nu = 0.29; G = 11.6e9; %Pa E = 208e9; %Pa density = 8.19; %g/cm^3 sh_exp = 0.075; %strain-hardening exponent sh_coeff = 1.845; %strain-hardening coefficient assert(abs(stress_strain2(S_y,e_y)-3.29918e6)/3.29918e6<5e-2)

5   Pass
S_y = 241e6; %Pa S_u = 300e6; %Pa e_y = 0.0035; e_u = 0.15; nu = 0.33; G = 26e9; %Pa E = 68.9e9; %Pa density = 2.7; %g/cm^3 sh_exp = 0.042; %strain-hardening exponent sh_coeff = 0.325; %strain-hardening coefficient assert(abs(stress_strain2(S_y,e_y)-4.2175e5)/4.2175e5<5e-2)

6   Pass
S_y = 70e6; %Pa S_u = 220e6; %Pa e_y = 0.00054; e_u = 0.48; nu = 0.34; G = 48e9; %Pa E = 130e9; %Pa density = 8.92; %g/cm^3 sh_exp = 0.44; %strain-hardening exponent sh_coeff = 0.304; %strain-hardening coefficient 530MPa assert(abs(stress_strain2(S_y,e_y)-1.89e4)/1.89e4<5e-2)

7   Pass
S_y = 317e6; %Pa S_u = 1130e6; %Pa e_y = 0.000685; e_u = 0.24; nu = 0.3; G = 178e9; %Pa E = 463e9; %Pa density = 21.02; %g/cm^3 sh_exp = 0.353; %strain-hardening exponent sh_coeff = 1.870; %strain-hardening coefficient assert(abs(stress_strain2(S_y,e_y)-1.085725e5)/1.085725e5<5e-2)

8   Pass
S_y = 82e6; %Pa S_u = 82e6; %Pa e_y = 0.0265; e_u = 0.45; nu = 0.41; G = 2.8e9; %Pa E = 3.5e-2; %Pa density = 1.14; %g/cm^3 assert(abs(stress_strain2(S_y,e_y)-1.0865e6)/1.0865e6<5e-2)

9   Pass
S_y = 230e6; %Pa S_u = 230e6; %Pa e_y = 0.016; e_u = 0.016; nu = 0.35; G = 13.0e9; %Pa E = 14.5e9; %Pa density = 1.51; %g/cm^3 assert(abs(stress_strain2(S_y,e_y)-1.84e6)/1.84e6<5e-2)

10   Pass
S_y = 1200e6; %Pa S_u = 1200e6; %Pa e_y = 0.001; e_u = 0.001; nu = 0.20; G = 478e9; %Pa E = 1200e9; %Pa density = 3.51; %g/cm^3 assert(abs(stress_strain2(S_y,e_y)-6e5)/6e5<5e-2)

11   Pass
ind = randi(4); switch ind case 1 S_y = 250e6; %Pa e_y = 0.00125; assert(abs(stress_strain2(S_y,e_y)-1.5625e5)/1.5625e5<5e-2) case 2 S_y = 82e6; %Pa e_y = 0.0265; assert(abs(stress_strain2(S_y,e_y)-1.0865e6)/1.0865e6<5e-2) case 3 S_y = 241e6; %Pa e_y = 0.0035; assert(abs(stress_strain2(S_y,e_y)-4.2175e5)/4.2175e5<5e-2) case 4 S_y = 1172e6; %Pa e_y = 0.00563; assert(abs(stress_strain2(S_y,e_y)-3.29918e6)/3.29918e6<5e-2) end

12   Pass
ind = randi(4); switch ind case 1 S_y = 1200e6; %Pa e_y = 0.001; assert(abs(stress_strain2(S_y,e_y)-6e5)/6e5<5e-2) case 2 S_y = 1172e6; %Pa e_y = 0.00563; assert(abs(stress_strain2(S_y,e_y)-3.29918e6)/3.29918e6<5e-2) case 3 S_y = 230e6; %Pa e_y = 0.016; assert(abs(stress_strain2(S_y,e_y)-1.84e6)/1.84e6<5e-2) case 4 S_y = 250e6; %Pa e_y = 0.00125; assert(abs(stress_strain2(S_y,e_y)-1.5625e5)/1.5625e5<5e-2) end

13   Pass
ind = randi(4); switch ind case 1 S_y = 830e6; %Pa e_y = 0.00728; assert(abs(stress_strain2(S_y,e_y)-3.0212e6)/3.0212e6<5e-2) case 2 S_y = 230e6; %Pa e_y = 0.016; assert(abs(stress_strain2(S_y,e_y)-1.84e6)/1.84e6<5e-2) case 3 S_y = 70e6; %Pa e_y = 0.00054; assert(abs(stress_strain2(S_y,e_y)-1.89e4)/1.89e4<5e-2) case 4 S_y = 317e6; %Pa e_y = 0.000685; assert(abs(stress_strain2(S_y,e_y)-1.085725e5)/1.085725e5<5e-2) end