Stepwise iterative maximum likelihood clustering approach

Version 1.0.0.0 (5.72 KB) by Alok
A clustering algorithm using iterative maximum likelihood
119 Downloads
Updated 12 Sep 2016

View License

% [Cluster,MaxLtot,DelLtot] = SIML(X,class,var,MaxIteration,InitMethod,Repeat)
%
% [Cluster,MaxLtot,DelLtot] = SIML(X) or SOML(X,class) or SOML(X,class,var)
% or SIML(X,class,var,MaxIteration)
% or SIML(X,class,var,MaxIteration,InitMethod)
%
% Stepwsie optimal maximum likelihood method
%
% INPUT
% 1) X <- number of samples x dimension (Data)
%
% 2) class <- number of classes
% or a range of class e.g. class = 1:5
% If no class information is given then default value 1:5 will be used.
%
% 3) var: default 0 (no figures)
% 1 (all plots - time consuming)
% 2 (only final cluster plot, MaxLtot plot and DelLtot plot)
%
% 4) MaxIteration <- max iteration before algorithm is exited (default 15)
%
% 5) InitMethod <- 1 for Random Initialization
% 2 for kmeans Initialization (default is 2)
% 3 iterative (supply means of c-1 classes for c-class)
% 4 for Max Min of norm of data
%
% 6) Repeat <- number of time the algorithm is repeated to find the best
% solution. Default value is 10. Increasing the value of
% Repeat may increase the clustering accuracy.
%
% OUTPUT
% 1) Cluster is labels of samples (number of samples x class range)
% 2) MaxLtot plot
% 3) DelLtot plot
%
% NOTE: Only meant for small dimension; i.e., d < n
%
% Alok Sharma, RIKEN, Japan; 3-Jun-2015
% Ref: Sharma et al., Stepwise iterative maximum likelihood clustering approach, BMC Bioinformatics, 17(319), 1-14, 2016

Cite As

Alok (2024). Stepwise iterative maximum likelihood clustering approach (https://www.mathworks.com/matlabcentral/fileexchange/59109-stepwise-iterative-maximum-likelihood-clustering-approach), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2015a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Categories
Find more on Descriptive Statistics and Visualization in Help Center and MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes
1.0.0.0