Energy Efficiency in Reinforcement Learning for WSN

version 1.0.0 (3.28 KB) by Code Work
Available code: WhatsApp : +919877014844


Updated Fri, 11 Jun 2021 11:18:41 +0000

View License

Energy Efficiency in Reinforcement Learning for Wireless Sensor Networks
As sensor networks for health monitoring become more prevalent, so will the need to control their usage and consumption of energy. This paper presents a method which leverages the algorithm's performance and energy consumption. By utilising Reinforcement Learning (RL) techniques, we provide an adaptive framework, which continuously performs weak training in an energy-aware system. We motivate this using a realistic example of residential localisation based on Received Signal Strength (RSS). The method is cheap in terms of work-hours, calibration and energy usage. It achieves this by utilising other sensors available in the environment. These other sensors provide weak labels, which are then used to employ the State-Action-Reward-State-Action (SARSA) algorithm and train the model over time. Our approach is evaluated on a simulated localisation environment and validated on a widely available pervasive health dataset which facilitates realistic residential localisation using RSS. We show that our method is cheaper to implement and requires less effort, whilst at the same time providing a performance enhancement and energy savings over time.
MATLAB Release Compatibility
Created with R2021a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Tags Add Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!