mattest
Perform two-sample t-test to evaluate differential expression of genes from two experimental conditions or phenotypes
Syntax
PValues
= mattest(DataX,
DataY
)
[PValues, TScores
] = mattest(DataX, DataY
)
[PValues, TScores, DFs
]
= mattest(DataX, DataY
)
... = mattest(..., 'VarType', VarTypeValue
, ...)
... = mattest(..., 'Permute', PermuteValue
, ...)
... = mattest(..., 'Bootstrap', BootstrapValue
, ...)
... = mattest(..., 'Showhist', ShowhistValue
, ...)
... = mattest(..., 'Showplot', ShowplotValue
, ...)
... = mattest(..., 'Labels', LabelsValue
, ...)
Input Arguments
DataX , DataY | DataMatrix
object or a matrix of gene expression values where each row
corresponds to a gene and each column corresponds to a replicate.
|
VarTypeValue | Character vector that specifies the variance type of the test. VarTypeValue can
be 'equal' or 'unequal' (default).
If set to 'equal' , mattest performs
the test assuming the two samples have equal variances. If set to 'unequal' , mattest performs
the test assuming the two samples have unknown and unequal variances. |
PermuteValue | Controls whether permutation tests are run, and if so, how
many. Choices are true , false (default),
or any integer greater than 2 . If set to true ,
the number of permutations is 1000 . |
BootstrapValue | Controls whether bootstrap tests are run, and if so, how many.
Choices are true , false (default),
or any integer greater than 2 . If set to true ,
the number of bootstrap tests is 1000 . |
ShowhistValue | Controls the display of histograms of t-score distributions
and p-value distributions. Choices are |
ShowplotValue | Controls the display of a normal t-score quantile plot.
Choices are |
LabelsValue | Cell array of character vectors or string vector containing labels (typically gene names or
probe set IDs) for each row in
DataX and
DataY . The labels
display if you click a data point in the t-score
quantile plot. |
Output Arguments
PValues | One of the following:
|
TScores | Column vector of t-scores for each gene in DataX and DataY . |
DFs | Column vector containing the degree of freedom for each gene
in DataX and DataY . |
Description
performs an unpaired t-test for differential
expression with a standard two-tailed and two-sample t-test on every
gene in PValues
= mattest(DataX,
DataY
)DataX
and DataY
and
returns a p-value for each gene. DataX
and DataY
are
either a DataMatrix
object or a matrix of gene expression values, in which each
row corresponds to a gene, and each column corresponds to a replicate. DataX
contains
data from one experimental condition and DataY
contains
data from another experimental condition. DataX
and DataY
must
have the same number of rows and are assumed to be normally distributed
in each class. PValues
is a column vector
of p-values for each gene, or, if at least one of the inputs is a
DataMatrix object, a DataMatrix object with row names the same as
the first input DataMatrix object and a column name of p-values
.
[
also returns a t-score
for each gene in PValues, TScores
] = mattest(DataX, DataY
)DataX
and DataY
. TScores
is
a column vector of t-scores for each gene.
[
also
returns PValues, TScores, DFs
]
= mattest(DataX, DataY
)DFs
, a column vector containing
the degree of freedom for each gene across both data sets, DataX
and DataY
.
... = mattest(..., '
calls PropertyName
', PropertyValue
,
...)mattest
with optional properties
that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName
must
be enclosed in single quotation marks and is case insensitive. These
property name/property value pairs are as follows:
... = mattest(..., 'VarType',
specifies the variance type of the test. VarTypeValue
, ...)VarTypeValue
can
be 'equal'
or 'unequal'
(default).
If set to 'equal'
, mattest
performs
the test assuming the two samples have equal variances. If set to 'unequal'
, mattest
performs
the test assuming the two samples have unknown and unequal variances.
... = mattest(..., 'Permute',
controls whether permutation tests are
run, and if so, how many. PermuteValue
, ...)PermuteValue
can
be true
, false
(default), or
any integer greater than 2
. If set to true
,
the number of permutations is 1000
.
... = mattest(..., 'Bootstrap',
controls whether bootstrap tests are run,
and if so, how many. BootstrapValue
, ...)BootstrapValue
can
be true
, false
(default), or
any integer greater than 2
. If set to true
,
the number of bootstrap tests is 1000
.
... = mattest(..., 'Showhist',
controls the display of histograms of
t-score distributions and p-value distributions. When ShowhistValue
, ...)ShowhistValue
is true
, mattest
displays
histograms. Default is false
.
... = mattest(..., 'Showplot',
controls the display of a normal t-score
quantile plot. When ShowplotValue
, ...)ShowplotValue
is true
, mattest
displays
a quantile-quantile plot. Default is false
. In
the t-score quantile plot, the black diagonal line represents the
sample quantile being equal to the theoretical quantile. Data points
of genes considered to be differentially expressed lie farther away
from this line. Specifically, data points with t-scores > (1 - 1/(2N))
or < 1/(2N)
display
with red circles. N
is the total number of genes.
... = mattest(..., 'Labels',
controls the display of labels when you click a
data point in the t-score quantile plot.
LabelsValue
, ...)LabelsValue
is a cell
array of character vectors or string vector
containing labels (typically gene names or probe
set IDs) for each row in
DataX
and
DataY
.
Examples
Load the MAT-file, included with the Bioinformatics Toolbox™ software, that contains Affymetrix® data from a prostate cancer study, specifically probe intensity data from Affymetrix HG-U133A GeneChip® arrays. The two variables in the MAT-file,
dependentData
andindependentData
, are two matrices of gene expression values from two experimental conditions.load prostatecancerexpdata
Calculate the p-values and t-scores for the gene expression values in the two matrices and display a normal t-score quantile plot.
[pvalues,tscores] = mattest(dependentData, independentData,... 'showplot',true);
Calculate the p-values and t-scores again using permutation tests (1000 permutations) and displaying histograms of t-score distributions and p-value distributions.
[pvalues,tscores] = mattest(dependentData,independentData,... 'permute',true,'showhist',true,... 'showplot',true);
Calculate the p-values and t-scores again using bootstrap tests (2000 tests) and displaying histograms of t-score distributions and p-value distributions.
[pvalues,tscores] = mattest(dependentData,independentData,... 'bootstrap',2000,'showhist',true,... 'showplot',true);
The prostatecancerexpdata.mat
file used in
this example contains data from Best et al., 2005.
References
[1] Review Literature: Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., and Vingron, M. (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18 (Suppl. 1), S96–S104.
[2] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary prostate cancer after androgen ablation therapy. Clinical Cancer Research 11, 6823–6834.
Version History
Introduced in R2006a
See Also
affygcrma
| affyrma
| maboxplot
| mafdr
| mainvarsetnorm
| mairplot
| maloglog
| malowess
| manorm
| mavolcanoplot
| rmasummary