Customize Match and Replacement Process
During the build process, the code generator uses:
Preset match criteria to identify functions and operators for which application-specific implementations replace default implementations.
Preset replacement function signatures.
It is possible that preset match criteria and preset replacement function signatures do not completely meet your function and operator replacement needs. For example:
You want to replace an operator with a particular fixed-point implementation function only when fraction lengths are within a particular range.
When a match occurs, you want to modify your replacement function signature based on compile-time information, such as passing fraction-length values into the function.
To add extra logic into the code replacement match and replacement process, create custom code replacement table entries. With custom entries, you can specify additional match criteria and modify the replacement function signature to meet application needs.
To create a custom code replacement entry:
Create a custom code replacement entry class, derived from
RTW.TflCFunctionEntryML (for function replacement) or RTW.TflCOperationEntryML
(for operator replacement).In your derived class, implement a
do_match
method with a fixed preset signature as a MATLAB® function. In yourdo_match
method, provide either or both of the following customizations that instantiate the class:Add match criteria that the base class does not provide. The base class provides a match based on:
Argument number
Argument name
Signedness
Word size
Slope (if not specified with wildcards)
Bias (if not specified with wildcards)
Math modes, such as saturation and rounding
Operator or function key
Modify the implementation signature by adding additional arguments or setting constant input argument values. You can inject a constant value, such as an input scaling value, as an additional argument to the replacement function.
Create code replacement entries that instantiate the custom entry class.
Register a library containing the code replacement table that includes your entries.
During code generation, the code replacement match process tries
to match function or operator call sites with the base class of your
derived entry class. If the process finds a match, the software calls
your do_match
method to execute your additional
match logic (if any) and your replacement
function customizations (if any).
Customize Code Match and Replacement for Functions
This example shows how to use custom code replacement table entries to refine the match and replacement logic for functions. The example shows how to:
Modify a sine function replacement only if the integer size on the current target platform is 32 bits.
Change the replacement such that the implementation function passes in a degrees-versus-radians flag as an input argument.
To exercise the table entries that you create in this example, create an ERT-based model with a sine function block. For example:
In the Inport block parameters, set the signal Data type to
double
. If the value selected for Configuration Parameters > Hardware Implementation > Device type supports an integer size other than 32, do one of the following:Select a temporary target platform with a 32-bit integer size.
Modify the code to match the integer size of your target platform.
Create a class, for example
TflCustomFunctionEntry
, that is derived from the base classRTW.TflCFunctionEntryML
. The derived class defines ado_match
method with the signature:function ent = do_match(hThis, ... hCSO, ... targetBitPerChar, ... targetBitPerShort, ... targetBitPerInt, ... targetBitPerLong, ... targetBitPerLongLong)
In the
do_match
signature:ent
is the return handle, which is returned either as empty (indicating that the match failed) or as aTflCFunctionEntry
handle.hThis
is a handle to the class instance.hCSO
is a handle to an object that the code generator creates for querying the library for a replacement.Remaining arguments are the number of bits for various data types of the current target.
The
do_match
method:Adds required additional match criteria that the base class does not provide.
Makes required modifications to the implementation signature.
In this case, the
do_match
method must match onlytargetBitPerInt
, representing the number of bits in the Cint
data type for the current target, to the value 32. If the code generator finds a match, the method sets the return handle and creates and adds an input argument. The input argument represents whether units are expressed as degrees or radians, to the replacement function signature.Alternatively, create and add the additional implementation function argument for passing a units flag in each code replacement table definition file that instantiates this class. In that case, this class definition code does not create the argument. That code sets only the argument value. For an example of creating and adding additional implementation function arguments in a table definition file, see Customize Code Match and Replacement for Scalar Operations.
classdef TflCustomFunctionEntry < RTW.TflCFunctionEntryML methods function ent = do_match(hThis, ... hCSO, ... %#ok targetBitPerChar, ... %#ok targetBitPerShort, ... %#ok targetBitPerInt, ... %#ok targetBitPerLong, ... %#ok targetBitPerLongLong) %#ok % DO_MATCH - Create a custom match function. The base class % checks the types of the arguments prior to calling this % method. This will check additional data and perhaps modify % the implementation function. ent = []; % default the return to empty, indicating the match failed. % Match sine function only if the target int size is 32 bits if targetBitPerInt == 32 % Need to modify the default implementation, starting from a copy % of the standard TflCFunctionEntry. ent = RTW.TflCFunctionEntry(hThis); % If the target int size is 32 bits, the implementation function % takes an additional input flag argument indicating degress vs. % radians. The additional argument can be created and added either % in the CRL table definition file that instantiates this class, or % here in the class definition, as follows: createAndAddImplementationArg(ent, 'RTW.TflArgNumericConstant', ... 'Name', 'u2', ... 'IsSigned', true, ... 'WordLength', 32, ... 'FractionLength', 0, ... 'Value', 1); end end end end
Exit the class folder and return to the previous working folder.
Create and save the following code replacement table definition file,
crl_table_custom_sinfcn_double.m
. This file defines a code replacement table that contains a function table entry for sine withdouble
input and output. This entry instantiates the derived class from the previous step,TflCustomFunctionEntry
.function hTable = crl_table_custom_sinfcn_double hTable = RTW.TflTable; %% Add TflCustomFunctionEntry fcn_entry = TflCustomFunctionEntry; setTflCFunctionEntryParameters(fcn_entry, ... 'Key', 'sin', ... 'Priority', 30, ... 'ImplementationName', 'mySin', ... 'ImplementationHeaderFile', 'mySin.h', ... 'ImplementationSourceFile', 'mySin.c'); createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ... 'Name', 'y1', ... 'IOType', 'RTW_IO_OUTPUT', ... 'DataTypeMode', 'double'); createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ... 'Name', 'u1', ... 'IOType', 'RTW_IO_INPUT', ... 'DataTypeMode', 'double'); % TflCustomFunctionEntry class do_match method will create and add % an implementation function argument during code generation if % the supported integer size on the current target is 32 bits. copyConceptualArgsToImplementation(fcn_entry); addEntry(hTable, fcn_entry);
Check the validity of the code replacement table entry.
At the command prompt, invoke the table definition file.
tbl = crl_table_custom_sinfcn_double
In the Code Replacement Viewer, view the table definition file.
crviewer(crl_table_custom_sinfcn_double)
Customize Code Match and Replacement for Nonscalar Operations
This example shows how to create custom code replacement entries that add logic to the code match and replacement process for a nonscalar operation. Custom entries specify additional match criteria or modify the replacement function signature to meet application needs.
This example restricts the match criteria for an element-wise
multiplication replacement to entries with a specific dimension range.
When a match occurs, the custom do_match
method
modifies the replacement signature to pass the number of elements
into the function.
To create custom code replacement entries that add logic to the code replacement match and replacement process:
Create the replacement function source and header files. For this example, create a directory named
src
and create these files in the directory:myMulImplLib.c
which contains this code:#include "myMulImplLib.h" void myElemMul_s32(int32_T* u1, int32_T* u2, int32_T* y1, uint32_T numElements) { int idx; for(idx = 0; idx<numElements; ++idx) { y1[idx] = u1[idx] * u2[idx]; } }
myMulImplLib.h
which contains this code:#ifndef __myMulImplLib_h #define __myMulImplLib_h #include "rtwtypes.h" void myElemMul_s32(int32_T* u1, int32_T* u2, int32_T* y1, uint32_T numElements); #endif /*__myMulImplLib_h*/
Create a class, for example
MyElemMultEntry
, which is derived from the base classRTW.TflCOperationEntryML
. The derived class defines ado_match
method with the following signature:function ent = do_match(hThis, ... hCSO, ... targetBitPerChar, ... targetBitPerShort, ... targetBitPerInt, ... targetBitPerLong, ... targetBitPerLongLong)
In the
do_match
signature:ent
is the return handle, which is returned as empty (indicating that the match failed) or as aTflCOperationEntry
handle.hThis
is the handle to the derived instance.hCSO
is a handle to an object that the code generator creates for querying the library for a replacement.Remaining arguments are the number of bits for various data types of the current target.
The
do_match
method:Adds match criteria that the base class does not provide.
Makes changes to the implementation signature.
The
do_match
method relies on the base class for checking data types and dimension ranges. If the code generator finds a match,do_match
:Sets the return handle.
Uses the conceptual arguments to compute the number of elements in the array. In the replacement entry returned, sets the value of the constant implementation argument as the number of elements of the array.
Updates the code replacement entry such that it matches CSOs that have the same argument dimensions.
classdef MyElemMultEntry < RTW.TflCOperationEntryML methods function obj = MyElemMultEntry(varargin) mlock; obj@RTW.TflCOperationEntryML(varargin{:}); end function ent = do_match(hThis, ... hCSO, ... %#ok targetBitPerChar, ... %#ok targetBitPerShort, ... %#ok targetBitPerInt, ... %#ok targetBitPerLong, ... %#ok targetBitPerLongLong ) %#ok % Fourth implementation arg represents number of elements for producing matches. assert(strcmp(hThis.Implementation.Arguments(4).Name,'numElements')); ent = RTW.TflCOperationEntry(hThis); % Calculate number of elements and set value of injected constant. ent.Implementation.Arguments(4).Value = prod(hCSO.ConceptualArgs(1).DimRange(1,:)); % Since implementation has been modified for specific DimRange, update % returned entry to match similar CSOs only. for idx =1:3 ent.ConceptualArgs(idx).DimRange = hCSO.ConceptualArgs(idx).DimRange; end end end end
Create and save the following code replacement table definition file,
myElemMultCrlTable.m
. This file defines a code replacement table that contains an operator entry generator for element-wise multiplication. The table entry:Instantiates the derived class
myElemMultEntry
from the previous step.Sets operator entry parameters with the call to the
setTflCOperationEntryParameters
function.Creates conceptual arguments
y1
,u1
, andu2
. The argument classRTW.TflArgMatrix
specifies matrix arguments to match. The three arguments are set up to match 2-dimensional matrices with at least two elements in each dimension.Calls the
getTflArgFromString
function to create a return value and four implementation arguments. Argumentsu1
andu2
are the operands,y1
is the product, and the fourth argument is the number of elements.Alternatively, the
do_match
method of the derived classmyElemMultEntry
can create and add the implementation arguments. When the number of additional implementation arguments required can vary based on compile-time information, use the alternative approach.Calls
addEntry
to add the entry to a code replacement table.
function hLib = myElemMultCrlTable libPath = fullfile(fileparts(which(mfilename)),'src'); hLib = RTW.TflTable; %---------- entry: RTW_OP_ELEM_MUL ----------- hEnt = MyElemMultEntry; hEnt.setTflCOperationEntryParameters( ... 'Key', 'RTW_OP_ELEM_MUL', ... 'Priority', 100, ... 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ... 'ImplementationName', 'myElemMul_s32', ... 'ImplementationSourceFile', 'myMulImplLib.c', ... 'ImplementationSourcePath', libPath, ... 'ImplementationHeaderFile', 'myMulImplLib.h', ... 'ImplementationHeaderPath', libPath, ... 'SideEffects', true, ... 'GenCallback','RTW.copyFileToBuildDir'); % Conceptual Args arg = RTW.TflArgMatrix('y1', 'RTW_IO_OUTPUT', 'int32'); arg.DimRange = [2 2; Inf Inf]; hEnt.addConceptualArg(arg); arg = RTW.TflArgMatrix('u1', 'RTW_IO_INPUT', 'int32'); arg.DimRange = [2 2; Inf Inf]; hEnt.addConceptualArg(arg); arg = RTW.TflArgMatrix('u2', 'RTW_IO_INPUT', 'int32'); arg.DimRange = [2 2; Inf Inf]; hEnt.addConceptualArg(arg); % Implementation Args arg = hEnt.getTflArgFromString('unused','void'); arg.IOType = 'RTW_IO_OUTPUT'; hEnt.Implementation.setReturn(arg); arg = hEnt.getTflArgFromString('u1','int32*'); hEnt.Implementation.addArgument(arg); arg = hEnt.getTflArgFromString('u2','int32*'); hEnt.Implementation.addArgument(arg); arg = hEnt.getTflArgFromString('y1','int32*'); arg.IOType = 'RTW_IO_OUTPUT'; hEnt.Implementation.addArgument(arg); arg = hEnt.getTflArgFromString('numElements','uint32',0); hEnt.Implementation.addArgument(arg); hLib.addEntry( hEnt );
Check the validity of the code replacement table entry.
At the command prompt, invoke the table definition file.
tbl = myElemMultCrlTable
In the Code Replacement Viewer, view the table definition file.
crviewer(myElemMultCrlTable)
Register the code replacement library. Create this file named
rtwTargetInfo.m
.function rtwTargetInfo(cm) cm.registerTargetInfo(@loc_register_crl); function this = loc_register_crl this(1) = RTW.TflRegistry; this(1).Name = 'My Element-Wise Multiplication CRL'; this(1).TableList = {'myElemMultCrlTable'}; this(1).BaseTfl = ''; this(1).TargetHWDeviceType = {'*'}; this(1).Description = '';
Refresh your current MATLAB session by using the command
sl_refresh_customizations
.sl_refresh_customizations
Create the model
myElemMul.slx
, which will use the code replacement library.The model contains:
Two Input ports with Data type
Int32
and Port dimensions set to[3 3]
Two Initial condition blocks with Initial condition set to
magic(3)
A Product block with Integer rounding mode set to
Floor
and Saturate on integer overflow de-selectedOne Output port from the output of the Product block
Set these configuration parameters:
System target file —
ert.tlc
Code replacement libraries —
My CRL Lib
When you generate code from the model, the generated code calls the replacement source code.
Customize Code Match and Replacement for Scalar Operations
This example shows how to create custom code replacement entries that add logic to the code match and replacement process for a scalar operation. Custom entries specify additional match criteria or modify the replacement function signature to meet application needs.
For example:
When fraction lengths are within a specific range, replace an operator with a fixed-point implementation function.
When a match occurs, modify the replacement function signature based on compile-time information, such as passing fraction-length values into the function.
This example modifies a fixed-point addition replacement such that the implementation function passes in the fraction lengths of the input and output data types as arguments.
To create custom code replacement entries that add logic to the code replacement match and replacement process:
Create a class, for example
TflCustomOperationEntry
, that is derived from the base classRTW.TflCOperationEntryML
. The derived class defines ado_match
method with the following signature:function ent = do_match(hThis, ... hCSO, ... targetBitPerChar, ... targetBitPerShort, ... targetBitPerInt, ... targetBitPerLong, ... targetBitPerLongLong)
In the
do_match
signature:ent
is the return handle, which is returned as empty (indicating that the match failed) or as aTflCOperationEntry
handle.hThis
is the handle to the class instance.hCSO
is a handle to an object that the code generator creates for querying the library for a replacement.Remaining arguments are the number of bits for various data types of the current target.
The
do_match
method adds match criteria that the base class does not provide. The method makes modifications to the implementation signature. In this case, thedo_match
method relies on the base class for checking word size and signedness.do_match
must match only the number of conceptual arguments to the value 3 (two inputs and one output) and the bias for each argument to value 0. If the code generator finds a match,do_match
:Sets the return handle.
Removes slope and bias wild cards from the conceptual arguments (the match is for specific slope and bias values).
Writes fraction-length values for the inputs and output into replacement function arguments 3, 4, and 5.
You can create and add three additional implementation function arguments for passing fraction lengths in the class definition or in each code replacement entry definition that instantiates this class. This example creates the arguments, adds them to a code replacement table definition file, and sets them to specific values in the class definition code.
classdef TflCustomOperationEntry < RTW.TflCOperationEntryML methods function ent = do_match(hThis, ... hCSO, ... %#ok targetBitPerChar, ... %#ok targetBitPerShort, ... %#ok targetBitPerInt, ... %#ok targetBitPerLong, ... %#ok targetBitPerLongLong) %#ok % DO_MATCH - Create a custom match function. The base class % checks the types of the arguments prior to calling this % method. This class will check additional data and can % modify the implementation function. % The base class checks word size and signedness. Slopes and biases % have been wildcarded, so the only additional checking to do is % to check that the biases are zero and that there are only three % conceptual arguments (one output, two inputs) ent = []; % default the return to empty, indicating the match failed if length(hCSO.ConceptualArgs) == 3 && ... hCSO.ConceptualArgs(1).Type.Bias == 0 && ... hCSO.ConceptualArgs(2).Type.Bias == 0 && ... hCSO.ConceptualArgs(3).Type.Bias == 0 % Modify the default implementation. Since this is a % generator entry, a concrete entry is created using this entry % as a template. The type of entry being created is a standard % TflCOperationEntry. Using the standard operation entry % provides required information, and you do not need % a custom match function. ent = RTW.TflCOperationEntry(hThis); % Since this entry is modifying the implementation for specific % fraction-length values (arguments 3, 4, and 5), the conceptual argument % wild cards must be removed (the wildcards were inherited from the % generator when it was used as a template for the concrete entry). % This concrete entry is now for a specific slope and bias. % hCSO holds the slope and bias values (created by the code generator). for idx=1:3 ent.ConceptualArgs(idx).CheckSlope = true; ent.ConceptualArgs(idx).CheckBias = true; % Set the specific Slope and Biases ent.ConceptualArgs(idx).Type.Slope = hCSO.ConceptualArgs(idx).Type.Slope; ent.ConceptualArgs(idx).Type.Bias = 0; end % Set the fraction-length values in the implementation function. ent.Implementation.Arguments(3).Value = ... -1.0*hCSO.ConceptualArgs(2).Type.FixedExponent; ent.Implementation.Arguments(4).Value = ... -1.0*hCSO.ConceptualArgs(3).Type.FixedExponent; ent.Implementation.Arguments(5).Value = ... -1.0*hCSO.ConceptualArgs(1).Type.FixedExponent; end end end end
Exit the class folder and return to the previous working folder.
Create and save the following code replacement table definition file,
crl_table_custom_add_ufix32.m
. This file defines a code replacement table that contains a single operator entry, an entry generator for unsigned 32-bit fixed-point addition operations, with arbitrary fraction-length values on the inputs and the output. The table entry:Instantiates the derived class
TflCustomOperationEntry
from the previous step. If you want to replace word sizes and signedness attributes, you can use the same derived class, but not the same entry, because you cannot use a wild card with theWordLength
andIsSigned
arguments. For example, to supportuint8
,int8
,uint16
,int16
, andint32
, add five other distinct entries. To use different implementation functions for saturation and rounding modes other than overflow and round to floor, add entries for those match permutations.Sets operator entry parameters with the call to the
setTflCOperationEntryParameters
function.Calls the
createAndAddConceptualArg
function to create conceptual argumentsy1
,u1
, andu2
.Calls
createAndSetCImplementationReturn
andcreateAndAddImplementationArg
to define the signature for the replacement function. Three of the calls tocreateAndAddImplementationArg
create implementation arguments to hold the fraction-length values for the inputs and output. Alternatively, the entry can omit those argument definitions. Instead, thedo_match
method of the derived classTflCustomOperationEntry
can create and add the three implementation arguments. When the number of additional implementation arguments required can vary based on compile-time information, use the alternative approach.Calls
addEntry
to add the entry to a code replacement table.
function hTable = crl_table_custom_add_ufix32 hTable = RTW.TflTable; % Add TflCustomOperationEntry op_entry = TflCustomOperationEntry; setTflCOperationEntryParameters(op_entry, ... 'Key', 'RTW_OP_ADD', ... 'Priority', 30, ... 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ... 'RoundingModes', {'RTW_ROUND_FLOOR'}, ... 'ImplementationName', 'myFixptAdd', ... 'ImplementationHeaderFile', 'myFixptAdd.h', ... 'ImplementationSourceFile', 'myFixptAdd.c'); createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ... 'Name', 'y1', ... 'IOType', 'RTW_IO_OUTPUT', ... 'CheckSlope', false, ... 'CheckBias', false, ... 'DataType', 'Fixed', ... 'Scaling', 'BinaryPoint', ... 'IsSigned', false, ... 'WordLength', 32); createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ... 'Name', 'u1', ... 'IOType', 'RTW_IO_INPUT', ... 'CheckSlope', false, ... 'CheckBias', false, ... 'DataType', 'Fixed', ... 'Scaling', 'BinaryPoint', ... 'IsSigned', false, ... 'WordLength', 32); createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ... 'Name', 'u2', ... 'IOType', 'RTW_IO_INPUT', ... 'CheckSlope', false, ... 'CheckBias', false, ... 'DataType', 'Fixed', ... 'Scaling', 'BinaryPoint', ... 'IsSigned', false, ... 'WordLength', 32); % Specify replacement function signature createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ... 'Name', 'y1', ... 'IOType', 'RTW_IO_OUTPUT', ... 'IsSigned', false, ... 'WordLength', 32, ... 'FractionLength', 0); createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ... 'Name', 'u1', ... 'IOType', 'RTW_IO_INPUT', ... 'IsSigned', false, ... 'WordLength', 32, ... 'FractionLength', 0); createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ... 'Name', 'u2', ... 'IOType', 'RTW_IO_INPUT', ... 'IsSigned', false, ... 'WordLength', 32, ... 'FractionLength', 0); % Add 3 fraction-length args. Actual values are set during code generation. createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ... 'Name', 'fl_in1', ... 'IOType', 'RTW_IO_INPUT', ... 'IsSigned', false, ... 'WordLength', 32, ... 'FractionLength', 0, ... 'Value', 0); createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ... 'Name', 'fl_in2', ... 'IOType', 'RTW_IO_INPUT', ... 'IsSigned', false, ... 'WordLength', 32, ... 'FractionLength', 0, ... 'Value', 0); createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ... 'Name', 'fl_out', ... 'IOType', 'RTW_IO_INPUT', ... 'IsSigned', false, ... 'WordLength', 32, ... 'FractionLength', 0, ... 'Value', 0); addEntry(hTable, op_entry);
Check the validity of the operator entry.
At the command prompt, invoke the table definition file.
tbl = crl_table_custom_add_ufix32
In the Code Replacement Viewer, view the table definition file.
crviewer(crl_table_custom_add_ufix32)