Main Content

Maximum Likelihood Estimation for Conditional Mean Models

Innovation Distribution

For conditional mean models in Econometrics Toolbox™, the form of the innovation process isεt=σtzt, where zt can be standardized Gaussian or Student’s t with ν>2 degrees of freedom. Specify your distribution choice in the arima model object Distribution property.

The innovation variance, σt2, can be a positive scalar constant, or characterized by a conditional variance model. Specify the form of the conditional variance using the Variance property. If you specify a conditional variance model, the parameters of that model are estimated with the conditional mean model parameters simultaneously.

Given a stationary model,

yt=μ+ψ(L)εt,

applying an inverse filter yields a solution for the innovation εt

εt=ψ1(L)(ytμ).

For example, for an AR(p) process,

εt=c+ϕ(L)yt,

where ϕ(L)=(1ϕ1LϕpLp) is the degree p AR operator polynomial.

estimate uses maximum likelihood to estimate the parameters of an arima model. estimate returns fitted values for any parameters in the input model object equal to NaN. estimate honors any equality constraints in the input model object, and does not return estimates for parameters with equality constraints.

Loglikelihood Functions

Given the history of a process, innovations are conditionally independent. Let Ht denote the history of a process available at time t, t = 1,...,N. The likelihood function for the innovation series is given by

f(ε1,ε2,,εN|HN1)=t=1Nf(εt|Ht1),

where f is a standardized Gaussian or t density function.

The exact form of the loglikelihood objective function depends on the parametric form of the innovation distribution.

  • If zt has a standard Gaussian distribution, then the loglikelihood function is

    LLF=N2log(2π)12t=1Nlogσt212t=1Nεt2σt2.

  • If zt has a standardized Student’s t distribution with ν>2 degrees of freedom, then the loglikelihood function is

    LLF=Nlog[Γ(ν+12)π(ν2)Γ(ν2)]12t=1Nlogσt2ν+12t=1Nlog[1+εt2σt2(ν2)].

estimate performs covariance matrix estimation for maximum likelihood estimates using the outer product of gradients (OPG) method.

See Also

Objects

Functions

Related Topics