mvnrmle
Multivariate normal regression (ignore missing data)
Syntax
Description
[
estimates a multivariate normal regression model without missing data. The model has
the formParameters
,Covariance
,Resid
,Info
] = mvnrmle(Data
,Design
)
for samples k = 1, ... , NUMSAMPLES
.
mvnrmle
estimates a
NUMPARAMS
-by-1
column vector of model
parameters called Parameters
, and a
NUMSERIES
-by-NUMSERIES
matrix of
covariance parameters called Covariance
.
mvnrmle(Data, Design)
with no output arguments plots the
log-likelihood function for each iteration of the algorithm.
[
estimates a multivariate normal regression model without missing data using optional
arguments.Parameters
,Covariance
,Resid
,Info
] = mvnrmle(___,MaxIterations
,TolParam
,TolObj
,Covar0
,CovarFormat
)
Input Arguments
Output Arguments
References
[1] Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing Data., 2nd Edition. John Wiley & Sons, Inc., 2002.
[2] Xiao-Li Meng and Donald B. Rubin. “Maximum Likelihood Estimation via the ECM Algorithm.” Biometrika. Vol. 80, No. 2, 1993, pp. 267–278.
Version History
Introduced in R2006a
See Also
ecmmvnrmle
| mvnrstd
| mvnrobj
| mvregress
Topics
- Multivariate Normal Regression
- Least-Squares Regression
- Covariance-Weighted Least Squares
- Feasible Generalized Least Squares
- Seemingly Unrelated Regression
- Multivariate Normal Regression With Missing Data
- Multivariate Normal Regression Without Missing Data
- Capital Asset Pricing Model with Missing Data
- Multivariate Normal Linear Regression