FFT Example

This example shows how a two-dimensional Fourier transform can be used on an optical mask to compute its diffraction pattern. Create a logical array that defines an optical mask with a small, circular aperture.

n = 2^10;                 % size of mask
M = zeros(n);
I = 1:n; 
x = I-n/2;                % mask x-coordinates 
y = n/2-I;                % mask y-coordinates
[X,Y] = meshgrid(x,y);    % create 2-D mask grid
R = 10;                   % aperture radius
A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R
M(A) = 1;                 % set mask elements inside aperture to 1
imagesc(M)                % plot mask
axis image

DP = fftshift(fft2(M));
axis image

Prepare myFFT for Kernel Creation

Create an entry-point function myFFT that computes the 2-D Fourier transform of the mask by using the fft2 function. Use the fftshift function to rearrange the output so that the zero-frequency component is at the center. To map this function to a GPU kernel, place the coder.gpu.kernelfun pragma within the function.

function [DP] = myFFT(M)


DP = fftshift(fft2(M));

Generated CUDA Code

When you generate CUDA® code, GPU Coder™ creates function calls (cufftEnsureInitialization) to initialize the cuFFT library, perform FFT operations, and release hardware resources that the cuFFT library uses. A snippet of the generated CUDA code is:

void myFFT(myFFTStackData *SD, const real_T M[1048576], creal_T DP[1048576])
  cudaMemcpy((void *)gpu_M, (void *)M, 8388608ULL, cudaMemcpyHostToDevice);
  myFFT_kernel1<<<dim3(2048U, 1U, 1U), dim3(512U, 1U, 1U)>>>(gpu_M, gpu_b);
  cufftEnsureInitialization(1024, CUFFT_D2Z, 1024, 1024);
  cufftExecD2Z(*cufftGlobalHandlePtr, (cufftDoubleReal *)&gpu_b[0],
               (cufftDoubleComplex *)&gpu_y1[0]);
  myFFT_kernel2<<<dim3(2048U, 1U, 1U), dim3(512U, 1U, 1U)>>>(gpu_y1, gpu_y);
  cufftEnsureInitialization(1024, CUFFT_Z2Z, 1024, 1024);
  cufftExecZ2Z(*cufftGlobalHandlePtr, (cufftDoubleComplex *)&gpu_y[0],
               (cufftDoubleComplex *)&gpu_DP[0], CUFFT_FORWARD);

The first cudaMemcpy function call transfers the 1024x1024 double-valued input M to the GPU memory. The myFFT_kernel1 kernel performs pre-processing of the input data before the cuFFT library calls. The two-dimensional Fourier transform call fft2 is equivalent to computing fft(fft(M).').'. Because batched transforms generally have higher performance compared to single transforms, GPU Coder has two 1-D cuFFT calls cufftExecD2Z to compute the double-precision real-to-complex forward transform of the input M followed by cufftExecZ2Z to perform the double-precision complex-to-complex transform of the result. The cufftEnsureDestruction() call destroys and frees all GPU resources associated with the cuFFT library call.