Pass MATLAB Data to Python
When calling a Python® function, MATLAB® converts MATLAB data into types that best represent the data in the Python language. For information about using Python data in MATLAB, see Handle Data Returned from Python Function.
MATLAB Type to Python Scalar Type Mapping
MATLAB Input Argument Type — | Resulting Python
| Examples |
---|---|---|
|
| Use Python Numeric Variables in MATLAB |
|
|
z = complex(1,2); py.cmath.polar(z) ans = Python tuple with no properties. (2.23606797749979, 1.1071487177940904) |
|
| |
|
| |
|
| |
|
| |
|
| Use Python str Variables in MATLAB |
|
|
py.list({string(missing),'Value'}) ans = Python list with no properties. [None, 'Value'] |
|
| |
|
| Use Python Dictionaries in MATLAB |
|
| Use Python Dictionaries in MATLAB |
table | py.pandas.DataFrame | Use Python Pandas DataFrames in MATLAB |
timetable | py.pandas.DataFrame | Use Python Pandas DataFrames in MATLAB |
datetime |
| Use MATLAB datetime Types with Python |
duration |
| Use MATLAB duration Types with Python |
Python object —
|
| |
function handle
|
| Pass Python Function to Python map Function |
Pass Vectors to Python
MATLAB Input Argument Type —
| Resulting Python Type |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pass Matrices and Multidimensional Arrays to Python
The Python language provides a protocol for accessing memory buffers like the data stored in a MATLAB array. MATLAB implements this Python buffer protocol for MATLAB arrays so that you can read MATLAB arrays directly from Python code, running in the same process as MATLAB, without copying data.
Many Python functions directly use the MATLAB array from Python without converting it to a native Python type. Some functions might require a specific type, such as
numpy.ndarray
, or might modify data in the array. These functions might
accept the MATLAB array and copy the data into the required type. Other functions might display an
error if you do not pass the required type. To pass data to these functions, first create the
required Python type from the MATLAB data, then pass it to the Python function. For example, to create array p
to pass to a
Python function that requires data of type numpy.array
, type:
p = py.numpy.array(magic(3))
p = Python ndarray: 8 1 6 3 5 7 4 9 2 Use details function to view the properties of the Python object. Use double function to convert to a MATLAB array.
MATLAB sparse arrays are not supported in Python. See Unsupported MATLAB Types
.
Troubleshooting Argument Errors
If a Python function expects a specific
Python multidimensional array type such as
numpy.ndarray
, then MATLAB displays a message with tips about
how to proceed. If the problem might be due to passing a matrix or a
multidimensional array as an argument, then do the following.
Check the documentation for the Python function and find out the expected type for the argument.
Create a Python object of that type in MATLAB and pass that to the Python function.
For example, suppose that the following code returns an error.
a = [1 2; 3 4]; py.pyfunc(a)
If the documentation of pyfunc
specifies that the expected type is
numpy.ndarray
, then try this
conversion:
py.pyfunc(numpy.ndarray(a))
If the error persists, then determine the root cause by checking for additional information in the Python exception.
Unsupported MATLAB Types
These MATLAB types are not supported in Python.
Multidimensional
char
orcell
arraysSparse arrays
struct
arrayscategorical
typescontainers.Map
typesMATLAB objects
matlab.metadata.Class
(py
.class
)
Related Examples
- Use Python Numeric Variables in MATLAB
- Use Python str Variables in MATLAB
- Use Python list Variables in MATLAB
- Use Python tuple Variables in MATLAB
- Use Python Dictionaries in MATLAB
- Use MATLAB datetime Types with Python
- Use MATLAB duration Types with Python