Run Rapid Simulations over a Range of Parameter Values
You can use the RSim system target file to run simulations over a range of parameter values.
Prepare Model
Open the model. For example:
mdlName = 'RapidSim'; open_system(mdlName);
Open the Simulink Coder app.
Set model configuration parameter System target file to
rsim.tlc
. For example:cs = getActiveConfigSet(mdlName); cs.switchTarget('rsim.tlc',[]);
Define tunable variables (for example, initial conditions for states and gain values). Convert the variables to
Simulink.Parameter
objects. Then, configure the objects to use a storage class other thanAuto
. For example:INIT_X1 = Simulink.Parameter(INIT_X1); INIT_X1.StorageClass = 'Model default'; INIT_X2 = Simulink.Parameter(INIT_X2); INIT_X2.StorageClass = 'Model default'; MU = Simulink.Parameter(MU); MU.StorageClass = 'Model default';
Define the names of files that will be created. For example:
prmFileName = [mdlName, '_prm_sets.mat']; logFileName = [mdlName, '_run_scr.log']; batFileName = [mdlName, '_run_scr']; exeFileName = mdlName; if ispc exeFileName = [exeFileName, '.exe']; batFileName = [batFileName, '.bat']; end aggDataFile = [mdlName, '_results']; startTime = cputime;
Build Model
Build the RSim executable program for the model. During the build process, a structural checksum is calculated for the model and embedded into the generated executable program. This checksum is used to check that a parameter set passed to the executable program is compatible with the program.
For example:
slbuild(mdlName);
Get Default Parameter Set for Model
Get the default rtP
structure (parameter set) for the model by
using the rsimgetrtp
function. The modelChecksum
field in the rtP
structure is the structural checksum of the model.
This must match the checksum embedded in the RSim executable program. If the two
checksums do not match, the executable program produces an error. The
rsimgetrtp
function generates an rtP
structure with entries for named tunable variables.
For example:
rtp = rsimgetrtp(mdlName)
Create Parameter Sets
Using the rtp
structure, build a structure array with different
values for the tunable variables in the model. For example you might want see how state
trajectories evolve for different initial values for states in the model. To do this,
generate different parameter sets with different values for each parameter.
For example:
INIT_X1_vals = -5:1:5; INIT_X2_vals = -5:1:5; nPrmSets = length(INIT_X1_vals)*length(INIT_X2_vals)
Save the rtp
structure array with the parameter sets to a
MAT-file.
save(prmFileName,'rtp');
Create Batch File
Create a batch script file to run the RSim executable program over the parameter sets. For this batch script, each run reads the specified parameter set from the parameter MAT-file and writes the results to the specified output MAT-file. The time out option provides a way to abort the run after the specified time limit and proceed to the next run if a run stops executing (for example, because the model has a singularity for that parameter set).
fid = fopen(batFileName, 'w'); idx = 1; for iX1 = INIT_X1_vals for iX2 = INIT_X2_vals for iMU = MU_vals outMatFile = [mdlName, '_run',num2str(idx),'.mat']; cmd = [exeFileName, ... ' -p ', prmFileName, '@', int2str(idx), ... ' -o ', outMatFile, ... ' -L 3600']; if ispc cmd = [cmd, ' 2>&1>> ', logFileName]; else % (unix) cmd = ['.' filesep cmd, ' 1> ', logFileName, ' 2>&1']; end fprintf(fid, ['echo "', cmd, '"\n']); fprintf(fid, [cmd, '\n']); idx = idx + 1; end end end if isunix system(['touch ', logFileName]); system(['chmod +x ', batFileName]); end fclose(fid);
For example, this command (on Windows®) specifies using the third parameter set from the rtP
structure in prm.mat
, writes the results to
run3.mat
, and aborts execution if a run takes longer than 3600
seconds of CPU time. While running, the script pipes messages from
model.exe
to run.log
, which you can use to
debug issues.
model.exe -p prm.mat@3 -o run3.mat -L 3600 2>&1>> run.log
Creating a batch/script file to run simulations enables you to call the system command once to run the simulations (or even run the batch script outside of MATLAB®) instead of calling the system command in a loop for each simulation. This improves performance because the system command has significant overhead.
Execute Batch File to Run simulations
Run the batch/script file, which runs the RSim executable program once for each parameter set and saves the results to a different MAT-file each time. You can run the batch file from outside MATLAB.
For example:
[stat, res] = system(['.' filesep batFileName]); if stat ~= 0 error(['Error running batch file ''', batFileName, ''' :', res]); end
Your script can generate multiple batch files and run them in parallel by distributing them across multiple computers. Also, you can run the batch files without launching MATLAB.
Load Output MAT-Files and Collate Results
Collect the simulation results from the output MAT-files into a structure. If the
output MAT-file corresponding to a particular run is not found, set the results
corresponding to that run to NaN
(not a number). This situation
occurs if a simulation run with a particular set of parameters encounters singularities
in the model.
For example:
idx = 1; for iX1 = INIT_X1_vals for iX2 = INIT_X2_vals for iMU = MU_vals outMatFile = [mdlName, '_run',num2str(idx),'.mat']; if exist(outMatFile,'file') load(outMatFile); aggData(idx).tout = rt_tout; aggData(idx).yout = rt_yout; else aggData(idx).tout = nan; aggData(idx).yout = nan; end idx = idx + 1; end end end
Save the structure to the results MAT-file. At this point, you can delete other MAT-files, as the saved data structure contains the aggregation of input (parameters sets) and output data (simulation results).
For example:
save(aggDataFile,'aggData'); disp(['Took ', num2str(cputime-startTime), ... ' seconds to generate results from ', ... num2str(nPrmSets), ' simulation runs.']);
Analyze Simulation Results
Plot and analyze the simulation results.
For example:
colors = {'b','g','r','c','m','y','k'}; nColors = length(colors); for idx = 1:nPrmSets col = colors{idx - nColors*floor(idx/nColors) + 1}; plot(aggData(idx).prms.INIT_X1, aggData(idx).prms.INIT_X2, [col,'x'], ... aggData(idx).yout(:,1), aggData(idx).yout(:,2),col); hold on end grid on xlabel('X1'); ylabel('X2'); axis('square');