RegressionKernel
Gaussian kernel regression model using random feature expansion
Description
RegressionKernel
is a trained model object for Gaussian
kernel regression using random feature expansion. RegressionKernel
is
more practical for big data applications that have large training sets but can also be
applied to smaller data sets that fit in memory.
Unlike other regression models, and for economical memory usage,
RegressionKernel
model objects do not store the training data.
However, they do store information such as the dimension of the expanded space, the
kernel scale parameter, and the regularization strength.
You can use trained RegressionKernel
models to continue training
using the training data, predict responses for new data, and compute the mean squared
error or epsilon-insensitive loss. For details, see resume
,
predict
,
and loss
.
Creation
Create a RegressionKernel
object using the fitrkernel
function. This function maps data in a low-dimensional space into a high-dimensional
space, then fits a linear model in the high-dimensional space by minimizing the
regularized objective function. Obtaining the linear model in the high-dimensional space
is equivalent to applying the Gaussian kernel to the model in the low-dimensional space.
Available linear regression models include regularized support vector machines (SVM) and
least-squares regression models.
Properties
Kernel Regression Properties
Epsilon
— Half width of epsilon-insensitive band
nonnegative scalar
Half the width of the epsilon-insensitive band, specified as a nonnegative scalar.
If Learner
is not 'svm'
, then
Epsilon
is an empty array
([]
).
Data Types: single
| double
Learner
— Linear regression model type
'svm'
(default) | 'leastsquares'
Linear regression model type, specified as
'leastsquares'
or
'svm'
.
In the following table,
x is an observation (row vector) from p predictor variables.
is a transformation of an observation (row vector) for feature expansion. T(x) maps x in to a high-dimensional space ().
β is a vector of coefficients.
b is the scalar bias.
Value | Algorithm | Loss Function | FittedLoss Value |
---|---|---|---|
'svm' | Support vector machine regression | Epsilon insensitive: | 'epsiloninsensitive' |
'leastsquares' | Linear regression through ordinary least squares | Mean squared error (MSE): | 'mse' |
NumExpansionDimensions
— Number of dimensions of expanded space
positive integer
Number of dimensions of the expanded space, specified as a positive integer.
Data Types: single
| double
KernelScale
— Kernel scale parameter
positive scalar
Kernel scale parameter, specified as a positive scalar.
Data Types: single
| double
BoxConstraint
— Box constraint
positive scalar
Box constraint, specified as a positive scalar.
Data Types: double
| single
Lambda
— Regularization term strength
nonnegative scalar
Regularization term strength, specified as a nonnegative scalar.
Data Types: single
| double
Mu
— Predictor means
numeric vector | []
Since R2023b
This property is read-only.
Predictor means, specified as a numeric vector. If you specify Standardize
as 1
or true
when you train the kernel model, then the length of the Mu
vector is equal to the number of expanded predictors (see ExpandedPredictorNames
). The vector contains 0
values for dummy variables corresponding to expanded categorical predictors.
If you set Standardize
to 0
or false
when you train the kernel model, then the Mu
value is an empty vector ([]
).
Data Types: double
Sigma
— Predictor standard deviations
numeric vector | []
Since R2023b
This property is read-only.
Predictor standard deviations, specified as a numeric vector. If you specify Standardize
as 1
or true
when you train the kernel model, then the length of the Sigma
vector is equal to the number of expanded predictors (see ExpandedPredictorNames
). The vector contains 1
values for dummy variables corresponding to expanded categorical predictors.
If you set Standardize
to 0
or false
when you train the kernel model, then the Sigma
value is an empty vector ([]
).
Data Types: double
FittedLoss
— Loss function used to fit linear model
'epsiloninsensitive'
| 'mse'
Loss function used to fit the linear model, specified as
'epsiloninsensitive'
or
'mse'
.
Value | Algorithm | Loss Function | Learner Value |
---|---|---|---|
'epsiloninsensitive' | Support vector machine regression | Epsilon insensitive: | 'svm' |
'mse' | Linear regression through ordinary least squares | Mean squared error (MSE): | 'leastsquares' |
Regularization
— Complexity penalty type
'lasso (L1)'
| 'ridge (L2)'
Complexity penalty type, specified as 'lasso (L1)'
or 'ridge
(L2)'
.
The software composes the objective function for minimization from the sum of the average loss
function (see FittedLoss
) and a regularization value from this
table.
Value | Description |
---|---|
'lasso (L1)' | Lasso (L1) penalty: |
'ridge (L2)' | Ridge (L2) penalty: |
λ specifies the regularization term
strength (see Lambda
).
The software excludes the bias term (β0) from the regularization penalty.
Other Regression Properties
CategoricalPredictors
— Indices of categorical predictors
vector of positive integers | []
Categorical predictor
indices, specified as a vector of positive integers. CategoricalPredictors
contains index values indicating that the corresponding predictors are categorical. The index
values are between 1 and p
, where p
is the number of
predictors used to train the model. If none of the predictors are categorical, then this
property is empty ([]
).
Data Types: single
| double
ModelParameters
— Parameters used for training model
structure
Parameters used for training the RegressionKernel
model, specified as a structure.
Access fields of ModelParameters
using dot notation. For example, access
the relative tolerance on the linear coefficients and the bias term by using
Mdl.ModelParameters.BetaTolerance
.
Data Types: struct
PredictorNames
— Predictor names
cell array of character vectors
Predictor names in order of their appearance in the predictor data,
specified as a cell array of character vectors. The length of
PredictorNames
is equal to the number of
columns used as predictor variables in the training data
X
or Tbl
.
Data Types: cell
ExpandedPredictorNames
— Expanded predictor names
cell array of character vectors
Expanded predictor names, specified as a cell array of character vectors.
If the model uses encoding for categorical variables, then
ExpandedPredictorNames
includes the names that describe the
expanded variables. Otherwise, ExpandedPredictorNames
is the same as
PredictorNames
.
Data Types: cell
ResponseName
— Response variable name
character vector
Response variable name, specified as a character vector.
Data Types: char
ResponseTransform
— Response transformation function to apply to predicted responses
'none'
| function handle
Response transformation function to apply to predicted responses,
specified as 'none'
or a function handle.
For kernel regression models and before the response transformation, the predicted response for the observation x (row vector) is
is a transformation of an observation for feature expansion.
β corresponds to
Mdl.Beta
.b corresponds to
Mdl.Bias
.
For a MATLAB® function or a function that you define, enter its function
handle. For example, you can enter Mdl.ResponseTransform =
@function
, where
function
accepts a numeric
vector of the original responses and returns a numeric vector of the
same size containing the transformed responses.
Data Types: char
| function_handle
Object Functions
incrementalLearner | Convert kernel regression model to incremental learner |
lime | Local interpretable model-agnostic explanations (LIME) |
loss | Regression loss for Gaussian kernel regression model |
partialDependence | Compute partial dependence |
plotPartialDependence | Create partial dependence plot (PDP) and individual conditional expectation (ICE) plots |
predict | Predict responses for Gaussian kernel regression model |
resume | Resume training of Gaussian kernel regression model |
shapley | Shapley values |
Examples
Train Gaussian Kernel Regression Model
Train a kernel regression model for a tall array by using SVM.
When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local MATLAB session when you have Parallel Computing Toolbox, change the global execution environment by using the mapreducer
function.
mapreducer(0)
Create a datastore that references the folder location with the data. The data can be contained in a single file, a collection of files, or an entire folder. Treat 'NA'
values as missing data so that datastore
replaces them with NaN
values. Select a subset of the variables to use. Create a tall table on top of the datastore.
varnames = {'ArrTime','DepTime','ActualElapsedTime'}; ds = datastore('airlinesmall.csv','TreatAsMissing','NA',... 'SelectedVariableNames',varnames); t = tall(ds);
Specify DepTime
and ArrTime
as the predictor variables (X
) and ActualElapsedTime
as the response variable (Y
). Select the observations for which ArrTime
is later than DepTime
.
daytime = t.ArrTime>t.DepTime; Y = t.ActualElapsedTime(daytime); % Response data X = t{daytime,{'DepTime' 'ArrTime'}}; % Predictor data
Standardize the predictor variables.
Z = zscore(X); % Standardize the data
Train a default Gaussian kernel regression model with the standardized predictors. Extract a fit summary to determine how well the optimization algorithm fits the model to the data.
[Mdl,FitInfo] = fitrkernel(Z,Y)
Found 6 chunks. |========================================================================= | Solver | Iteration / | Objective | Gradient | Beta relative | | | Data Pass | | magnitude | change | |========================================================================= | INIT | 0 / 1 | 4.307833e+01 | 9.925486e-02 | NaN | | LBFGS | 0 / 2 | 2.782790e+01 | 7.202403e-03 | 9.891473e-01 | | LBFGS | 1 / 3 | 2.781351e+01 | 1.806211e-02 | 3.220672e-03 | | LBFGS | 2 / 4 | 2.777773e+01 | 2.727737e-02 | 9.309939e-03 | | LBFGS | 3 / 5 | 2.768591e+01 | 2.951422e-02 | 2.833343e-02 | | LBFGS | 4 / 6 | 2.755857e+01 | 5.124144e-02 | 7.935278e-02 | | LBFGS | 5 / 7 | 2.738896e+01 | 3.089571e-02 | 4.644920e-02 | | LBFGS | 6 / 8 | 2.716704e+01 | 2.552696e-02 | 8.596406e-02 | | LBFGS | 7 / 9 | 2.696409e+01 | 3.088621e-02 | 1.263589e-01 | | LBFGS | 8 / 10 | 2.676203e+01 | 2.021303e-02 | 1.533927e-01 | | LBFGS | 9 / 11 | 2.660322e+01 | 1.221361e-02 | 1.351968e-01 | | LBFGS | 10 / 12 | 2.645504e+01 | 1.486501e-02 | 1.175476e-01 | | LBFGS | 11 / 13 | 2.631323e+01 | 1.772835e-02 | 1.161909e-01 | | LBFGS | 12 / 14 | 2.625264e+01 | 5.837906e-02 | 1.422851e-01 | | LBFGS | 13 / 15 | 2.619281e+01 | 1.294441e-02 | 2.966283e-02 | | LBFGS | 14 / 16 | 2.618220e+01 | 3.791806e-03 | 9.051274e-03 | | LBFGS | 15 / 17 | 2.617989e+01 | 3.689255e-03 | 6.364132e-03 | | LBFGS | 16 / 18 | 2.617426e+01 | 4.200232e-03 | 1.213026e-02 | | LBFGS | 17 / 19 | 2.615914e+01 | 7.339928e-03 | 2.803348e-02 | | LBFGS | 18 / 20 | 2.620704e+01 | 2.298098e-02 | 1.749830e-01 | |========================================================================= | Solver | Iteration / | Objective | Gradient | Beta relative | | | Data Pass | | magnitude | change | |========================================================================= | LBFGS | 18 / 21 | 2.615554e+01 | 1.164689e-02 | 8.580878e-02 | | LBFGS | 19 / 22 | 2.614367e+01 | 3.395507e-03 | 3.938314e-02 | | LBFGS | 20 / 23 | 2.614090e+01 | 2.349246e-03 | 1.495049e-02 | |========================================================================|
Mdl = RegressionKernel ResponseName: 'Y' Learner: 'svm' NumExpansionDimensions: 64 KernelScale: 1 Lambda: 8.5385e-06 BoxConstraint: 1 Epsilon: 5.9303
FitInfo = struct with fields:
Solver: 'LBFGS-tall'
LossFunction: 'epsiloninsensitive'
Lambda: 8.5385e-06
BetaTolerance: 1.0000e-03
GradientTolerance: 1.0000e-05
ObjectiveValue: 26.1409
GradientMagnitude: 0.0023
RelativeChangeInBeta: 0.0150
FitTime: 25.1639
History: [1x1 struct]
Mdl
is a RegressionKernel
model. To inspect the regression error, you can pass Mdl
and the training data or new data to the loss
function. Or, you can pass Mdl
and new predictor data to the predict
function to predict responses for new observations. You can also pass Mdl
and the training data to the resume
function to continue training.
FitInfo
is a structure array containing optimization information. Use FitInfo
to determine whether optimization termination measurements are satisfactory.
For improved accuracy, you can increase the maximum number of optimization iterations ('IterationLimit'
) and decrease the tolerance values ('BetaTolerance'
and 'GradientTolerance'
) by using the name-value pair arguments of fitrkernel
. Doing so can improve measures like ObjectiveValue
and RelativeChangeInBeta
in FitInfo
. You can also optimize model parameters by using the 'OptimizeHyperparameters'
name-value pair argument.
Estimate Sample Loss and Resume Training
Resume training a Gaussian kernel regression model for more iterations to improve the regression loss.
Load the carbig
data set.
load carbig
Specify the predictor variables (X
) and the response variable (Y
).
X = [Acceleration,Cylinders,Displacement,Horsepower,Weight]; Y = MPG;
Delete rows of X
and Y
where either array has NaN
values. Removing rows with NaN
values before passing data to fitrkernel
can speed up training and reduce memory usage.
R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5);
Y = R(:,end);
Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the partition definition.
rng(10) % For reproducibility N = length(Y); cvp = cvpartition(N,'Holdout',0.1); idxTrn = training(cvp); % Training set indices idxTest = test(cvp); % Test set indices
Train a kernel regression model. Standardize the training data, set the iteration limit to 5, and specify 'Verbose',1
to display diagnostic information.
Xtrain = X(idxTrn,:); Ytrain = Y(idxTrn); Mdl = fitrkernel(Xtrain,Ytrain,'Standardize',true, ... 'IterationLimit',5,'Verbose',1)
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 5.691016e+00 | 0.000000e+00 | 5.852758e-02 | | 0 | | LBFGS | 1 | 1 | 5.086537e+00 | 8.000000e+00 | 5.220869e-02 | 9.846711e-02 | 256 | | LBFGS | 1 | 2 | 3.862301e+00 | 5.000000e-01 | 3.796034e-01 | 5.998808e-01 | 256 | | LBFGS | 1 | 3 | 3.460613e+00 | 1.000000e+00 | 3.257790e-01 | 1.615091e-01 | 256 | | LBFGS | 1 | 4 | 3.136228e+00 | 1.000000e+00 | 2.832861e-02 | 8.006254e-02 | 256 | | LBFGS | 1 | 5 | 3.063978e+00 | 1.000000e+00 | 1.475038e-02 | 3.314455e-02 | 256 | |=================================================================================================================|
Mdl = RegressionKernel ResponseName: 'Y' Learner: 'svm' NumExpansionDimensions: 256 KernelScale: 1 Lambda: 0.0028 BoxConstraint: 1 Epsilon: 0.8617
Mdl
is a RegressionKernel
model.
Estimate the epsilon-insensitive error for the test set.
Xtest = X(idxTest,:); Ytest = Y(idxTest); L = loss(Mdl,Xtest,Ytest,'LossFun','epsiloninsensitive')
L = 2.0674
Continue training the model by using resume
. This function continues training with the same options used for training Mdl
.
UpdatedMdl = resume(Mdl,Xtrain,Ytrain);
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 3.063978e+00 | 0.000000e+00 | 1.475038e-02 | | 256 | | LBFGS | 1 | 1 | 3.007822e+00 | 8.000000e+00 | 1.391637e-02 | 2.603966e-02 | 256 | | LBFGS | 1 | 2 | 2.817171e+00 | 5.000000e-01 | 5.949008e-02 | 1.918084e-01 | 256 | | LBFGS | 1 | 3 | 2.807294e+00 | 2.500000e-01 | 6.798867e-02 | 2.973097e-02 | 256 | | LBFGS | 1 | 4 | 2.791060e+00 | 1.000000e+00 | 2.549575e-02 | 1.639328e-02 | 256 | | LBFGS | 1 | 5 | 2.767821e+00 | 1.000000e+00 | 6.154419e-03 | 2.468903e-02 | 256 | | LBFGS | 1 | 6 | 2.738163e+00 | 1.000000e+00 | 5.949008e-02 | 9.476263e-02 | 256 | | LBFGS | 1 | 7 | 2.719146e+00 | 1.000000e+00 | 1.699717e-02 | 1.849972e-02 | 256 | | LBFGS | 1 | 8 | 2.705941e+00 | 1.000000e+00 | 3.116147e-02 | 4.152590e-02 | 256 | | LBFGS | 1 | 9 | 2.701162e+00 | 1.000000e+00 | 5.665722e-03 | 9.401466e-03 | 256 | | LBFGS | 1 | 10 | 2.695341e+00 | 5.000000e-01 | 3.116147e-02 | 4.968046e-02 | 256 | | LBFGS | 1 | 11 | 2.691277e+00 | 1.000000e+00 | 8.498584e-03 | 1.017446e-02 | 256 | | LBFGS | 1 | 12 | 2.689972e+00 | 1.000000e+00 | 1.983003e-02 | 9.938921e-03 | 256 | | LBFGS | 1 | 13 | 2.688979e+00 | 1.000000e+00 | 1.416431e-02 | 6.606316e-03 | 256 | | LBFGS | 1 | 14 | 2.687787e+00 | 1.000000e+00 | 1.621956e-03 | 7.089542e-03 | 256 | | LBFGS | 1 | 15 | 2.686539e+00 | 1.000000e+00 | 1.699717e-02 | 1.169701e-02 | 256 | | LBFGS | 1 | 16 | 2.685356e+00 | 1.000000e+00 | 1.133144e-02 | 1.069310e-02 | 256 | | LBFGS | 1 | 17 | 2.685021e+00 | 5.000000e-01 | 1.133144e-02 | 2.104248e-02 | 256 | | LBFGS | 1 | 18 | 2.684002e+00 | 1.000000e+00 | 2.832861e-03 | 6.175231e-03 | 256 | | LBFGS | 1 | 19 | 2.683507e+00 | 1.000000e+00 | 5.665722e-03 | 3.724026e-03 | 256 | | LBFGS | 1 | 20 | 2.683343e+00 | 5.000000e-01 | 5.665722e-03 | 9.549119e-03 | 256 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 21 | 2.682897e+00 | 1.000000e+00 | 5.665722e-03 | 7.172867e-03 | 256 | | LBFGS | 1 | 22 | 2.682682e+00 | 1.000000e+00 | 2.832861e-03 | 2.587726e-03 | 256 | | LBFGS | 1 | 23 | 2.682485e+00 | 1.000000e+00 | 2.832861e-03 | 2.953648e-03 | 256 | | LBFGS | 1 | 24 | 2.682326e+00 | 1.000000e+00 | 2.832861e-03 | 7.777294e-03 | 256 | | LBFGS | 1 | 25 | 2.681914e+00 | 1.000000e+00 | 2.832861e-03 | 2.778555e-03 | 256 | | LBFGS | 1 | 26 | 2.681867e+00 | 5.000000e-01 | 1.031085e-03 | 3.638352e-03 | 256 | | LBFGS | 1 | 27 | 2.681725e+00 | 1.000000e+00 | 5.665722e-03 | 1.515199e-03 | 256 | | LBFGS | 1 | 28 | 2.681692e+00 | 5.000000e-01 | 1.314940e-03 | 1.850055e-03 | 256 | | LBFGS | 1 | 29 | 2.681625e+00 | 1.000000e+00 | 2.832861e-03 | 1.456903e-03 | 256 | | LBFGS | 1 | 30 | 2.681594e+00 | 5.000000e-01 | 2.832861e-03 | 8.704875e-04 | 256 | | LBFGS | 1 | 31 | 2.681581e+00 | 5.000000e-01 | 8.498584e-03 | 3.934768e-04 | 256 | | LBFGS | 1 | 32 | 2.681579e+00 | 1.000000e+00 | 8.498584e-03 | 1.847866e-03 | 256 | | LBFGS | 1 | 33 | 2.681553e+00 | 1.000000e+00 | 9.857038e-04 | 6.509825e-04 | 256 | | LBFGS | 1 | 34 | 2.681541e+00 | 5.000000e-01 | 8.498584e-03 | 6.635528e-04 | 256 | | LBFGS | 1 | 35 | 2.681499e+00 | 1.000000e+00 | 5.665722e-03 | 6.194735e-04 | 256 | | LBFGS | 1 | 36 | 2.681493e+00 | 5.000000e-01 | 1.133144e-02 | 1.617763e-03 | 256 | | LBFGS | 1 | 37 | 2.681473e+00 | 1.000000e+00 | 9.869233e-04 | 8.418484e-04 | 256 | | LBFGS | 1 | 38 | 2.681469e+00 | 1.000000e+00 | 5.665722e-03 | 1.069722e-03 | 256 | | LBFGS | 1 | 39 | 2.681432e+00 | 1.000000e+00 | 2.832861e-03 | 8.501930e-04 | 256 | | LBFGS | 1 | 40 | 2.681423e+00 | 2.500000e-01 | 1.133144e-02 | 9.543716e-04 | 256 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 41 | 2.681416e+00 | 1.000000e+00 | 2.832861e-03 | 8.763251e-04 | 256 | | LBFGS | 1 | 42 | 2.681413e+00 | 5.000000e-01 | 2.832861e-03 | 4.101888e-04 | 256 | | LBFGS | 1 | 43 | 2.681403e+00 | 1.000000e+00 | 5.665722e-03 | 2.713209e-04 | 256 | | LBFGS | 1 | 44 | 2.681392e+00 | 1.000000e+00 | 2.832861e-03 | 2.115241e-04 | 256 | | LBFGS | 1 | 45 | 2.681383e+00 | 1.000000e+00 | 2.832861e-03 | 2.872858e-04 | 256 | | LBFGS | 1 | 46 | 2.681374e+00 | 1.000000e+00 | 8.498584e-03 | 5.771001e-04 | 256 | | LBFGS | 1 | 47 | 2.681353e+00 | 1.000000e+00 | 2.832861e-03 | 3.160871e-04 | 256 | | LBFGS | 1 | 48 | 2.681334e+00 | 5.000000e-01 | 8.498584e-03 | 1.045502e-03 | 256 | | LBFGS | 1 | 49 | 2.681314e+00 | 1.000000e+00 | 7.878714e-04 | 1.505118e-03 | 256 | | LBFGS | 1 | 50 | 2.681306e+00 | 1.000000e+00 | 2.832861e-03 | 4.756894e-04 | 256 | | LBFGS | 1 | 51 | 2.681301e+00 | 1.000000e+00 | 1.133144e-02 | 3.664873e-04 | 256 | | LBFGS | 1 | 52 | 2.681288e+00 | 1.000000e+00 | 2.832861e-03 | 1.449821e-04 | 256 | | LBFGS | 1 | 53 | 2.681287e+00 | 2.500000e-01 | 1.699717e-02 | 2.357176e-04 | 256 | | LBFGS | 1 | 54 | 2.681282e+00 | 1.000000e+00 | 5.665722e-03 | 2.046663e-04 | 256 | | LBFGS | 1 | 55 | 2.681278e+00 | 1.000000e+00 | 2.832861e-03 | 2.546349e-04 | 256 | | LBFGS | 1 | 56 | 2.681276e+00 | 2.500000e-01 | 1.307940e-03 | 1.966786e-04 | 256 | | LBFGS | 1 | 57 | 2.681274e+00 | 5.000000e-01 | 1.416431e-02 | 1.005310e-04 | 256 | | LBFGS | 1 | 58 | 2.681271e+00 | 5.000000e-01 | 1.118892e-03 | 1.147324e-04 | 256 | | LBFGS | 1 | 59 | 2.681269e+00 | 1.000000e+00 | 2.832861e-03 | 1.332914e-04 | 256 | | LBFGS | 1 | 60 | 2.681268e+00 | 2.500000e-01 | 1.132045e-03 | 5.441369e-05 | 256 | |=================================================================================================================|
Estimate the epsilon-insensitive error for the test set using the updated model.
UpdatedL = loss(UpdatedMdl,Xtest,Ytest,'LossFun','epsiloninsensitive')
UpdatedL = 1.8933
The regression error decreases by a factor of about 0.08
after resume
updates the regression model with more iterations.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™. (since R2023a)
Usage notes and limitations:
The
predict
function supports code generation.When you train a kernel regression model by using
fitrkernel
, the value of theResponseTransform
name-value argument cannot be an anonymous function.
For more information, see Introduction to Code Generation.
Version History
Introduced in R2018aR2023b: Kernel models support standardization of predictors
The fitckernel
and fitrkernel
functions support the standardization of numeric predictors. That is, in the call to either function, you can specify the Standardize
value as true
to center and scale each numeric predictor variable. Kernel models include Mu
and Sigma
properties that contain the means and standard deviations, respectively, used to standardize the predictors before training. The properties are empty when the fitting function does not perform any standardization.
R2023a: Generate C/C++ code for prediction
You can generate C/C++ code for the predict
function.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)