Energy production and marine propulsion, the main market segments for large diesel and gas engines, are facing environmental and commercial challenges to design cleaner and more efficient engines. As the world's first manufacturer to use common rail electronic fuel injection on large, oil-fired diesel engines, Wärtsilä is at the forefront of embedded system innovation. Key to this innovation is their engine control software, developed by teams of control strategists, software engineers, and hardware designers to reduce emissions, increase performance, and ensure reliability.
As their engine software grew in size and complexity, however, Wärtsilä’s manual C-code approach prevented their engineering teams from developing clear specifications and communicating effectively. Using MathWorks tools for Model-Based Design, Wärtsilä adopted a more natural paradigm using modeling and simulation.
"Symbolic programming with executable specifications and automatic code generation is necessary for developing sophisticated embedded software for our engine controls," explains Ari Saikkonen, Wärtsilä automation expert. "Simulink and Embedded Coder are our core tools for applying Model-Based Design and have been successfully applied in our production programs."