Main Content

TDD Reciprocity-Based PDSCH Beamforming Using SRS

This example shows how to exploit channel reciprocity to calculate the physical downlink shared channel (PDSCH) beamforming weights in a time division duplex (TDD) scenario. The beamforming weights calculation uses a channel estimate based on uplink sounding reference signal (SRS). Using these beamforming weights, the example uses the same channel for a downlink PDSCH transmission.

Introduction

TDD systems use the same frequency band for uplink (UL) and downlink (DL) transmissions. The radio channel is reciprocal because it has the same characteristics in both UL and DL directions. Exploiting this reciprocity, you can use a UL transmission to obtain a channel estimate and then use this channel estimate to calculate parameters for a DL transmission.

The TDD operation in this example calculates the channel estimate based on an SRS and then uses this channel estimate to calculate the downlink beamforming weights. This method is also known as reciprocity-based beamforming. Using these weights, the example then beamforms the PDSCH for the DL slots. Finally, the example measures the throughput of the link.

Simulation Parameters

Specify the number of frames to simulate, the SNR, and the carrier frequency.

NFrames = 2;        % Total number of frames to simulate
SNRdB = 5;          % SNR in dB
fc = 6e9;           % Carrier freq. (Hz)

Specify the antenna array sizes for the base station (BS) and user equipment (UE). Assume rectangular arrays. The number of SRS antenna ports is limited to 1, 2 or 4. Therefore, for simplicity, the total number of UE antennas must be one of these values.

bsAntSize = [4 4];  % number of rows and columns in rectangular array (base station)
ueAntSize = [2 2];  % number of rows and columns in rectangular array (UE). Total number of antennas must be 1, 2 or 4

% Reset random generator for reproducibility
rng('default');

TDD Configuration

The example considers a UL slot followed by one or more DL slots. For simplicity, assume an uplink slot at the start of transmission to ensure that there is a channel estimate and a set of beamforming weights before the transmission of any DL slots.

noDLSlotsPerULSlot = 4; % number of DL slots per UL slot

% Cyclic uplink/downlink pattern. One uplink slot followed by one or some
% downlink slots
ULDLpattern = [false true(1,noDLSlotsPerULSlot)]; % false: UL, true: DL
ULDLstring(ULDLpattern) = "DL";
ULDLstring(~ULDLpattern) = "UL";
disp("Uplink/Downlink cyclic pattern:")
Uplink/Downlink cyclic pattern:
disp("Slot " + string((0:length(ULDLstring)-1)') + ": " + ULDLstring(:))
    "Slot 0: UL"
    "Slot 1: DL"
    "Slot 2: DL"
    "Slot 3: DL"
    "Slot 4: DL"

Carrier Configuration

Set the carrier parameters.

% Numerology
SCS = 30; % subcarrier spacing: 15, 30, 60, 120, 240 (kHz)
NRB = 24; % bandwidth in number of resource blocks (24RBs at 30kHz SCS for 10MHz BW)

carrier = nrCarrierConfig;
carrier.NSizeGrid = NRB;
carrier.SubcarrierSpacing = SCS;
carrier.CyclicPrefix = 'Normal';  % 'Normal' or 'Extended'

% Get OFDM related information (sampling rate, symbol lengths, symbols
% per slot, slots per subframe/frame, FFT size)
ofdmInfo = nrOFDMInfo(carrier);

PDSCH and DL-SCH Configuration

Configure the PDSCH. Assume one layer and allocate the whole bandwidth for the PDSCH.

modulation = "16QAM";       % PDSCH modulation scheme
numLayers = 1;

pdsch = nrPDSCHConfig;
pdsch.NumLayers = numLayers;
pdsch.Modulation = modulation;
pdsch.PRBSet = 0:NRB-1;     % assume full band allocation
pdsch.DMRS.DMRSAdditionalPosition = 1; % one additional DMRS position to deal better with changing channels

verifyNumLayers(numLayers,bsAntSize,ueAntSize);

Specify the DL-SCH parameters and create the DL-SCH encoder and decoder objects. This example does not consider HARQ, therefore the redundancy value (RV) is fixed.

% DL-SCH parameters
codeRate = 490/1024;
RV = 0;

% Create DL-SCH encoder object
encodeDLSCH = nrDLSCH;
encodeDLSCH.TargetCodeRate = codeRate;

% Create DL-SCH decoder object
decodeDLSCH = nrDLSCHDecoder;
decodeDLSCH.TargetCodeRate = codeRate;
decodeDLSCH.LDPCDecodingAlgorithm = 'Normalized min-sum';
decodeDLSCH.MaximumLDPCIterationCount = 6;

Set Up CDL Channel Model

Create the CDL channel model object. This object is bidirectional and can model both DL and UL directions.

channel = nrCDLChannel;
channel.DelayProfile = 'CDL-A';
channel.DelaySpread = 300e-9;
channel.CarrierFrequency = fc;
channel.MaximumDopplerShift = 100;
channel.SampleRate = ofdmInfo.SampleRate;

Set the antenna arrays. Initially, the channel operates in the DL direction, therefore the transmit antenna array corresponds to the BS, while the receive antenna array corresponds to the UE.

channel.TransmitAntennaArray.Size = [bsAntSize 1 1 1]; % Assume only 1 polarization and 1 panel of arrays
channel.ReceiveAntennaArray.Size = [ueAntSize 1 1 1];  % Assume only 1 polarization and 1 panel of arrays

chInfo = channel.info();
nBSAnts = chInfo.NumTransmitAntennas;   % Number of BS antennas
nUEAnts = chInfo.NumReceiveAntennas;    % Number of UE antennas

Display array configuration, element radiation pattern, and cluster path directions.

channel.displayChannel();

Figure contains an axes. The axes with title Delay Profile: CDL-A. Site: Receiver contains 52 objects of type patch, line, surface, quiver. These objects represent Antenna Panel, Polarization, Element Pattern, Cluster Paths.

Figure contains an axes. The axes with title Delay Profile: CDL-A. Site: Transmitter contains 64 objects of type patch, line, surface, quiver. These objects represent Antenna Panel, Polarization, Element Pattern, Cluster Paths.

SRS Configuration

Configure the UE carrier and SRS. The number of SRS antenna ports is 1, 2, or 4, therefore the number of UE antennas must be one of these values. For more information on SRS parameterization, see NR SRS Configuration. To ensure that regardless of the TDD configuration there is an SRS for all UL slots, set the SRS period to one.

% SRS configuration, configure a multi-port SRS
srs = nrSRSConfig;
srs.NumSRSSymbols = 4;          % Number of OFDM symbols allocated per slot (1,2,4)
srs.SymbolStart = 8;            % Starting OFDM symbol within a slot
srs.NumSRSPorts = nUEAnts;      % Number of SRS antenna ports (1,2,4).
srs.FrequencyStart = 0;         % Frequency position of the SRS in RBs
srs.NRRC = 0;                   % Additional offset from FreqStart specified in blocks of 4 PRBs (0...67)
srs.CSRS = 7;                   % Bandwidth configuration C_SRS (0...63). It controls the allocated bandwidth to the SRS
srs.BSRS = 0;                   % Bandwidth configuration B_SRS (0...3). It controls the allocated bandwidth to the SRS
srs.BHop = 0;                   % Frequency hopping configuration (0...3). Set BHop < BSRS to enable frequency hopping
srs.KTC = 2;                    % Comb number (2,4). Frequency density in subcarriers
srs.SRSPeriod = [1 0];          % Periodicity and offset in slots. SRSPeriod(2) must be < SRSPeriod(1). Set the period to 1 so there is an SRS in all UL slots
srs.ResourceType = 'periodic';  % Resource type ('periodic','semi-persistent','aperiodic'). Use 'aperiodic' to disable inter-slot frequency hopping

Visualize the SRS configuration.

% Generate uplink SRS waveform.
[srsWaveform,srsGrid,srsWaveformInfo,srsIndices,srsSymbols] = generateULSRSWaveform(carrier,srs);
% Display the transmitted OFDM grid containing SRS
% Create x-axis and y-axis vectors
symbols = 0:(carrier.NSlot+1)*carrier.SymbolsPerSlot-1;
subcarriers = 1:carrier.NSizeGrid*12;
figure;imagesc(symbols,subcarriers,abs(srsGrid(:,:,1)));
xlabel('OFDM symbol'); ylabel('Subcarrier'); axis xy;
title('Transmitted SRS (port 1)');

Figure contains an axes. The axes with title Transmitted SRS (port 1) contains an object of type image.

Throughput Simulation Using Reciprocity-Based Beamforming

This section simulates these steps:

For UL slots:

  • Exploit channel reciprocity by swapping transmit and receive antennas.

  • Generate and send the SRS through the channel.

  • Perform channel estimation and calculate the beamforming weights using singular value decomposition (SVD). Assume wideband beamforming in the downlink, that is, assume one set of weights for the whole bandwidth. For more information on SRS-based channel estimation, see NR Uplink Channel State Information Estimation Using SRS.

  • This example assumes that a DL slot follows an UL slot, therefore swap transmit and receive antennas.

For DL slots:

  • Generate and beamform the PDSCH using the weights calculated in the latest UL slot.

  • Send this signal through the fading channel, add noise and decode the resulting signal. Use the result to calculate the throughput.

The diagnosticsOn flag stores and displays the error vector magnitude (EVM) information for all slots per layer. The EVM gives an indication of the quality of the received signal throughout the simulation.

% Initialize result arrays
bitTput = [];           % Number of successfully received bits per transmission
txedTrBlkSizes = [];    % Number of transmitted info bits per transmission
evmPerSlot = zeros(ofdmInfo.SlotsPerFrame*NFrames,pdsch.NumLayers);
calculateEVM = comm.EVM();

diagnosticsOn = true;

for nSlot = 0:ofdmInfo.SlotsPerFrame*NFrames-1 
    
    if ~ULDLpattern(mod(nSlot,length(ULDLpattern))+1)
        
        if diagnosticsOn
            disp("Slot "+string(nSlot)+", UL slot");
        end
        
        % Reverse channel direction to swap the roles of the transmit and
        % receive arrays. Initially the channel is configured for the DL.
        % Assume there is always a DL slot before any UL slot.
        if ~channel.TransmitAndReceiveSwapped
            channel.swapTransmitAndReceive();
        end
        
        % New slot
        carrier.NSlot = nSlot;
        
        % Generate srsWaveform
        [srsWaveform,srsGrid,srsWaveformInfo,srsIndices,srsSymbols] = generateULSRSWaveform(carrier,srs);
        
        % Send uplink signal through the channel and add AWGN.        
        % Pad UL waveforms with zeros to flush the channel filter
        chInfo = info(channel);
        maxChDelay = ceil(max(chInfo.PathDelays*channel.SampleRate));
        maxChDelay = maxChDelay + chInfo.ChannelFilterDelay;
        srsWaveform = [srsWaveform; zeros(maxChDelay, size(srsWaveform,2))]; % required later to flush the channel filter to obtain the received signal
        
        % Transmission through channel
        rxWaveform = channel(srsWaveform);
        
        % Add AWGN to the received time domain waveform
        noise = generateAWGN(SNRdB,ofdmInfo.Nfft,size(rxWaveform));
        rxWaveform = rxWaveform + noise;
        % Use SRS for timing estimation
        offset = nrTimingEstimate(carrier,rxWaveform,srsIndices,srsSymbols);
        
        % Perform OFDM demodulation
        rxGrid = nrOFDMDemodulate(carrier,rxWaveform(1+offset:end,:));
        
        % Perform practical channel estimation
        cdmLengths = hSRSCDMLengths(srs); % Calculate SRS CDM lengths
        hEst = nrChannelEstimate(carrier,rxGrid,srsIndices,srsSymbols,'AveragingWindow',[0 7],'CDMLengths',cdmLengths);
        
        % Get Beamforming Weights
        % Calculate these weights for the maximum number of layers the
        % system can theoretically support, i.e. min(nBSAnts,nUEAnts).
        % Later we can select a smaller number of layers.
        nUplinkLayers = min(nBSAnts,nUEAnts); % number of layers used in the uplink transmission
        [wue,wbs,~] = getBeamformingWeights(hEst,nUplinkLayers);
        wbs = wbs(1:pdsch.NumLayers,:); % for precoding only use weights corresponding to the number of PDSCH layers
        wbs = wbs /sqrt(pdsch.NumLayers);
        
        % The SRS channel estimate was obtained with an uplink transmission. Switch
        % the channel direction to model the downlink. This switches the roles of the
        % transmit and receive arrays, i.e. the transmit array becomes the receive array
        % and vice versa.        
        if channel.TransmitAndReceiveSwapped
            channel.swapTransmitAndReceive();
        end
        
    else % DL slot        
        % New slot
        carrier.NSlot = nSlot;
        
        % Generate PDSCH waveform and precode using the beamforming weights
        % obtained from SRS channel estimation
        [txWaveform,waveformInfo,pdschResources,dmrsResources,trBlkSizes] = ...
            generatePDSCHWaveform(carrier,pdsch,encodeDLSCH,RV,wbs);
        
        pdschSymbolsTx = pdschResources.pdschSymbolsTx;
        pdschIndices = pdschResources.pdschIndices;
        
        dmrsSymbols = dmrsResources.dmrsSymbols;
        dmrsIndices = dmrsResources.dmrsIndices;
        
        % Send signal through the CDL channel and add noise
        chInfo = info(channel);
        % Pad with zeros to flush the channel filter and obtain the received signal
        maxChDelay = ceil(max(chInfo.PathDelays*channel.SampleRate)) + chInfo.ChannelFilterDelay;
        txWaveform = [txWaveform; zeros(maxChDelay, size(txWaveform,2))];
        
        rxWaveform = channel(txWaveform);
        
        % Add AWGN to the received time-domain waveform
        noise = generateAWGN(SNRdB,ofdmInfo.Nfft,size(rxWaveform));
        rxWaveform = rxWaveform + noise;
        
        % Synchronize to received signal using the DM-RS
        [offset,mag] = nrTimingEstimate(carrier,rxWaveform,dmrsIndices,dmrsSymbols);
        rxWaveform = rxWaveform(1+offset:end,:);
        
        % OFDM demodulation
        rxGrid = nrOFDMDemodulate(carrier,rxWaveform);
        
        % Channel estimation
        [estChannelGrid,noiseEst] = nrChannelEstimate(carrier,rxGrid,dmrsIndices,dmrsSymbols,'CDMLengths',pdsch.DMRS.CDMLengths);
        
        % Equalization and PDSCH decoding
        [pdschRx,pdschHest] = nrExtractResources(pdschIndices,rxGrid,estChannelGrid);
        [pdschEq,csi] = nrEqualizeMMSE(pdschRx,pdschHest,noiseEst);        
        [dlschLLRs,rxSymbols] = nrPDSCHDecode(carrier,pdsch,pdschEq,noiseEst);
        
        % Scale LLRs by CSI
        csi = nrLayerDemap(csi); % CSI layer demapping
        for cwIdx = 1:pdsch.NumCodewords
            Qm = length(dlschLLRs{cwIdx})/length(rxSymbols{cwIdx}); % bits per symbol
            csi{cwIdx} = repmat(csi{cwIdx}.',Qm,1);   % expand by each bit per symbol
            dlschLLRs{cwIdx} = dlschLLRs{cwIdx} .* csi{cwIdx}(:);   % scale
        end

        % Decode the DL-SCH transport channel
        decodeDLSCH.TransportBlockLength = trBlkSizes;
        [decbits,blkerr] = decodeDLSCH(dlschLLRs,pdsch.Modulation,pdsch.NumLayers,RV);
        reset(decodeDLSCH); % reset internal soft buffers, assume no retransmissions
        
        %  Store values to calculate throughput (only for active PDSCH instances)
        if(any(trBlkSizes ~= 0))
            bitTput = [bitTput trBlkSizes.*(1-blkerr)];
            txedTrBlkSizes = [txedTrBlkSizes trBlkSizes];                         
        end
        
        if diagnosticsOn
            if blkerr
                disp("Error in DL slot "+string(nSlot));
            else
                disp("Slot "+string(nSlot)+", successful DL reception");
            end
            evmPerSlot(nSlot+1,:)=calculateEVM(pdschSymbolsTx,pdschEq);
        end
    end
end
Slot 0, UL slot
Slot 1, successful DL reception
Slot 2, successful DL reception
Slot 3, successful DL reception
Slot 4, successful DL reception
Slot 5, UL slot
Slot 6, successful DL reception
Slot 7, successful DL reception
Slot 8, successful DL reception
Slot 9, successful DL reception
Slot 10, UL slot
Slot 11, successful DL reception
Slot 12, successful DL reception
Slot 13, successful DL reception
Slot 14, successful DL reception
Slot 15, UL slot
Slot 16, successful DL reception
Slot 17, successful DL reception
Slot 18, successful DL reception
Slot 19, successful DL reception
Slot 20, UL slot
Slot 21, successful DL reception
Slot 22, successful DL reception
Slot 23, successful DL reception
Slot 24, successful DL reception
Slot 25, UL slot
Slot 26, successful DL reception
Slot 27, successful DL reception
Slot 28, successful DL reception
Slot 29, successful DL reception
Slot 30, UL slot
Slot 31, successful DL reception
Slot 32, successful DL reception
Slot 33, successful DL reception
Slot 34, successful DL reception
Slot 35, UL slot
Slot 36, successful DL reception
Slot 37, successful DL reception
Slot 38, successful DL reception
Slot 39, successful DL reception

Throughput Results

Plot the EVM per slot and calculate the throughput in Mbps and as a percentage of the overall number of bits transmitted. There is no EVM measurement for UL slots, therefore there are gaps in the EVM figure corresponding to UL slots.

if diagnosticsOn
    tegendTxt =cell(pdsch.NumLayers,1);
    for n=1:pdsch.NumLayers
        tegendTxt{n} = "layer "+string(n);
    end
    figure;bar(0:ofdmInfo.SlotsPerFrame*NFrames-1,evmPerSlot)
    xlabel("Slot Number");ylabel("EVM (%)")
    title("PDSCH Symbols EVM")
    legend(tegendTxt);
end

Figure contains an axes. The axes with title PDSCH Symbols EVM contains an object of type bar. This object represents layer 1.

% Calculate maximum and simulated throughput
maxThroughput = sum(txedTrBlkSizes); % Max possible throughput
simThroughput = sum(bitTput,2);      % Simulated throughput

% Display the results dynamically in the command window
fprintf([['\n\nThroughput(Mbps) for ', num2str(NFrames) ' frame(s) '],...
    '= %.4f Mbps\n'], 1e-6*simThroughput/(NFrames*10e-3));
Throughput(Mbps) for 2 frame(s) = 10.4448 Mbps
fprintf(['Throughput(%%) for ', num2str(NFrames) ' frame(s) = %.4f %%\n'],...
    simThroughput*100/maxThroughput);
Throughput(%) for 2 frame(s) = 100.0000 %

Local functions

function noise = generateAWGN(SNRdB,Nfft,sizeRxWaveform)
% Generate AWGN for a given value of SNR in dB (SNRDB). This is the
% receiver SNR per resource element and antenna assuming the channel does
% not affect the power of the signal. NFFT is the FFT size used in OFDM
% demodulation. SIZERXWAVEFORM is the size of the receive waveform used to
% calculate the size of the noise matrix.

    % Normalize noise power to take account of sampling rate, which is
    % a function of the IFFT size used in OFDM modulation. The SNR
    % is defined per RE for each receive antenna (TS 38.101-4).
    nRxAnts = sizeRxWaveform(2);
    SNR = 10^(SNRdB/20); % Calculate linear noise gain
    N0 = 1/(sqrt(2.0*nRxAnts*double(Nfft))*SNR);
    noise = N0*complex(randn(sizeRxWaveform),randn(sizeRxWaveform));
end

function [wtx,wrx,D] = getBeamformingWeights(hEst,nLayers)
% Get beamforming weights given a channel matrix HEST and the number of
% layers NLAYERS. One set of weights is provided for the whole bandwidth.
% The beamforming weights are calculated using singular value (SVD)
% decomposition. 
%
% This function returns the beamforming weights for the transmitter and the
% receiver (WTX and WRX) and the singular value matrix (D).
    
    % Average channel estimate
    [~,~,R,P] = size(hEst);
    H = permute(mean(reshape(hEst,[],R,P)),[2 3 1]);
    
    % SVD decomposition
    [U,D,V] = svd(H);
    wtx = V(:,1:nLayers).';
    wrx = U(:,1:nLayers)';
end

function [srsWaveform,srsGrid,srsWaveformInfo,srsIndices,srsSymbols] = generateULSRSWaveform(ue,srs)
% Generate the SRS symbols, map to slot grid and OFDM modulate. This
% function returns the time and frequency domain waveforms (SRSWAVEFORM and SRSGRID),
% associated information (SRSWAVEFORMINFO), and the SRS symbols and its
% mapping indices (SRSSYMBOLS and SRSINDICES).
%
% The function inputs are the UE carrier and the SRS configuration object.
    
    [srsIndices,~] = nrSRSIndices(ue,srs);
    srsSymbols = nrSRS(ue,srs);
    
    % Create a slot-wise resource grid empty grid and map SRS symbols
    srsGrid = nrResourceGrid(ue,srs.NumSRSPorts);
    srsGrid(srsIndices) = srsSymbols;
    
    % Determine if the slot contains SRS
    isSRSSlot= ~isempty(srsSymbols);
    if ~isSRSSlot
        error("nr5g:TDDReciprocityExample:NoSRS","Slot "+ string(ue.NSlot) + ": No SRS present");
    end
    
    % OFDM Modulation
    [srsWaveform,srsWaveformInfo] = nrOFDMModulate(ue,srsGrid);
end

function [txWaveform,waveformInfo,pdschResources,dmrsResources,trBlkSizes] = ...
    generatePDSCHWaveform(carrier,pdsch,encodeDLSCH,RV,wbs)
% For a given slot, generate transport block, apply DL-SCH encoding and
% PDSCH modulate. Generate the PDSCH DM-RS. Precode resulting signal and
% OFDM modulate. This function returns the time-domain signal TXWAVEFORM and
% associated information WAVEFORMINFO. The resource structures
% PDSCHRESOURCES and DMRSRESOURCES include the PDSCH and DM-RS symbols and
% their respective mapping indices. The function also returns the transport
% block sizes (TRBLKSIZES).
%
% The function inputs include the CARRIER and PDSCH configuration objects,
% the DL-SCH encoder object (ENCODEDLSCH), the redundancy version (RV), and
% the precoding weights (WBS).

    % Generate PDSCH indices
    [pdschIndices,pdschInfo] = nrPDSCHIndices(carrier,pdsch);
    
    % Calculate transport block sizes
    Xoh_PDSCH = 0;
    codeRate = encodeDLSCH.TargetCodeRate;
    trBlkSizes = nrTBS(pdsch.Modulation,pdsch.NumLayers,numel(pdsch.PRBSet),pdschInfo.NREPerPRB,codeRate,Xoh_PDSCH);
    
    for cwIdx = 1:pdsch.NumCodewords
        trBlk = randi([0 1],trBlkSizes(cwIdx),1);
        setTransportBlock(encodeDLSCH,trBlk,cwIdx-1);
    end
    
    % Encode the DL-SCH transport blocks
    codedTrBlock = encodeDLSCH(pdsch.Modulation,pdsch.NumLayers,pdschInfo.G,RV);
    
    % Generate PDSCH symbols and precode
    pdschSymbolsTx = nrPDSCH(carrier,pdsch,codedTrBlock);
    pdschSymbolsTxPrecoded = pdschSymbolsTx*wbs;
    
    pdschResources.pdschSymbolsTx = pdschSymbolsTx;
    pdschResources.pdschIndices = pdschIndices;
    
    % Create an empty resource grid and map the PDSCH symbols. The PDSCH
    % indices are calculated for a single antenna port. After precoding,
    % map the resulting signal to multiple antennas. The function
    % nrExtractResources() helps to convert the single-port PDSCH indices
    % to multiple antennas
    nBSAnts = size(wbs,2);
    pdschGrid = nrResourceGrid(carrier,nBSAnts);
    [~,pdschAntIndices] = nrExtractResources(pdschIndices,pdschGrid);
    pdschGrid(pdschAntIndices) = pdschSymbolsTxPrecoded;
    
    % Generate DM-RS symbols and indices
    dmrsSymbols = nrPDSCHDMRS(carrier,pdsch);
    dmrsIndices = nrPDSCHDMRSIndices(carrier,pdsch);
    
    dmrsResources.dmrsSymbols = dmrsSymbols;
    dmrsResources.dmrsIndices = dmrsIndices;
    
    % PDSCH DM-RS precoding and mapping. Similarly to the PDSCH, the DM-RS
    % indices are calculated for a single port, the function
    % nrExtractResources() helps to convert these to multiantenna indices
    for p = 1:size(dmrsSymbols,2)
        [~,dmrsAntIndices] = nrExtractResources(dmrsIndices(:,p),pdschGrid);
        pdschGrid(dmrsAntIndices) = pdschGrid(dmrsAntIndices) + dmrsSymbols(:,p)*wbs(p,:);
    end
    
    % Perform OFDM modulation of the resource grid
    [txWaveform,waveformInfo] = nrOFDMModulate(carrier,pdschGrid);
end

function cdmLengths = hSRSCDMLengths(srs)
%   Get CDM lengths for the SRS configuration SRS.
%
%   SRS is an SRS-specific configuration object with properties:
%   NumSRSPorts     - Number of SRS antenna ports (1,2,4)
%   KTC             - Transmission comb number (2,4)
%   CyclicShift     - Cyclic shift number offset (0...NCSmax-1).
%                     NCSmax = 12 if KTC = 4 and NCSmax = 8 if KTC = 2
    if srs.NumSRSPorts == 1
        cdmLengths = [1 1];
    elseif srs.NumSRSPorts == 2
        cdmLengths = [2 1];
    elseif (srs.KTC == 2 && srs.CyclicShift >= 4) || (srs.KTC == 4 && srs.CyclicShift >= 6)
        cdmLengths = [2 1];
    else
        cdmLengths = [4 1];
    end
end

function verifyNumLayers(numLayers,bsAntSize,ueAntSize)
    if numLayers>min(prod(bsAntSize),prod(ueAntSize))
        error("nr5g:TDDReciprocityExample:InvalidNumLayers",...
            'The number of layers (%d) must satisfy NLayers <= min(num BS ants,num UE ants) = min(%d,%d) = (%d)',...
            numLayers,prod(bsAntSize),prod(ueAntSize),min(prod(bsAntSize),prod(ueAntSize)));
    end
end

See Also

Functions

Objects

Related Topics